skip to main content

Title: Neighbours consistently influence tree growth and survival in a frequently burned open oak landscape

Successful management of fire‐prone woody ecosystems is challenging and requires knowledge of the spatial arrangement of the trees and how the tree distribution patterns influence the nature and consequences of subsequent fires.

In open tree landscapes, trees are often aggregated, and the ability of trees within the clumps to survive fires plays a significant role in determining subsequent landscape dynamics. If positive interactions exist among neighbouring trees, this will help maintain the patterns of clumped trees. However, the tree‐aggregated landscape will continue to exist only if the positive neighbour interactions persist consistently over time. In cases where disturbances are episodic, detecting these interactions is only possible through long‐term studies.

Data reported here are from a 25‐year study involving the annual tree censusing of a large grid‐plot in a frequently burned open oak landscape dominated byQuercus macrocarpaandQuercus ellipsoidallis. The results showed that while having neighbours reduced tree growth, neighbours consistently facilitated survival, irrespective as to whether the neighbours were conspecifics or heterospecifics. Trees of all sizes in close proximity to neighbours were considerably more likely to survive fire throughout the study. This neighbour facilitation is likely the result of a reduction of both herbaceous and woody fuel within clumps.

Synthesis. This is the first study to document consistent neighbour facilitation among trees experiencing repeated stressors over an extended time period. Our findings support the literature documenting positive neighbour effects among plants in stressful and highly disturbed environments, in accordance with the stress‐gradient hypothesis. While aggregated tree regeneration is typically viewed as the primary cause for the development of tree clumps in fire‐prone ecosystems, our study showed that aggregated tree survival, by itself, can also be an important driver of post‐fire tree clumping. Our results support the growing literature emphasizing the importance of landscape heterogeneity as a driver of resilience in fire‐prone tree ecosystems, and the value of maintaining or creating this heterogeneity during forest management.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Date Published:
Journal Name:
Journal of Ecology
Page Range / eLocation ID:
p. 1802-1812
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Transitions from grass to woody plant dominance, widely reported in arid systems, are typically attributed to changes in disturbance regimes in combination with abiotic feedbacks, whereas biotic mechanisms such as competition and facilitation are often overlooked. Yet, research in semi‐arid and subhumid savannas indicates that biotic interactions are important drivers in systems at risk for state transition. We sought to bridge this divide by experimentally manipulating grass‐on‐shrub and shrub‐on‐shrub interactions in early and late stages of grassland–shrubland state transition, respectively, and to assess the extent to which these interactions might influence arid land state transition dynamics.

    TargetProsopis glandulosashrubs had surrounding grasses or conspecific neighbours left intact or killed with foliar herbicide, and metrics of plant performance were monitored over multiple years for shrubs with and without grass or shrub neighbours.

    Productivity of small shrubs was enhanced by grass removal in years with above‐average precipitation, a result not evident in larger shrubs or during dry years. Proxy evidence based on nearest neighbour metrics suggested shrub–shrub competition was at play, but our experimental manipulations revealed no such influence.

    Competition from grasses appears to attenuate the rate at which shrubs achieve the size necessary to modify the physical environment in self‐reinforcing ways, but only during the early stages of shrub encroachment. Our results further suggest that at late stages of grassland‐to‐shrubland state transitions, shrub–shrub competition will not slow the rate of shrub expansion, and suggest that maximum shrub cover is regulated by something other than density‐dependent mechanisms. We conclude that grass effects on shrubs should be included in assessments of desert grassland state transition probabilities and rates, and that desertification models in arid ecosystems that traditionally focus on disturbance and abiotic feedbacks should be broadened to incorporate spatial and temporal variations in competitive effects.

    Aplain language summaryis available for this article.

    more » « less
  2. Abstract

    Anthropogenic activities have altered historical disturbance regimes, and understanding the mechanisms by which these shifting perturbations interact is essential to predicting where they may erode ecosystem resilience. Emerging infectious plant diseases, caused by human translocation of nonnative pathogens, can generate ecologically damaging forms of novel biotic disturbance. Further, abiotic disturbances, such as wildfire, may influence the severity and extent of disease‐related perturbations via their effects on the occurrence of hosts, pathogens and microclimates; however, these interactions have rarely been examined.

    The disease ‘sudden oak death’ (SOD), associated with the introduced pathogenPhytophthora ramorum, causes acute, landscape‐scale tree mortality in California's fire‐prone coastal forests. Here, we examined interactions between wildfire and the biotic disturbance impacts of this emerging infectious disease. Leveraging long‐term datasets that describe wildfire occurrence andP. ramorumdynamics across the Big Sur region, we modelled the influence of recent and historical fires on epidemiological parameters, including pathogen presence, infestation intensity, reinvasion, and host mortality.

    Past wildfire altered disease dynamics and reduced SOD‐related mortality, indicating a negative interaction between these abiotic and biotic disturbances. Frequently burned forests were less likely to be invaded byP. ramorum, had lower incidence of host infection, and exhibited decreased disease‐related biotic disturbance, which was associated with reduced occurrence and density of epidemiologically significant hosts. Following a recent wildfire, survival of mature bay laurel, a key sporulating host, was the primary driver ofP. ramoruminfestation and reinvasion, but younger, rapidly regenerating host vegetation capable of sporulation did not measurably influence disease dynamics. Notably, the effect ofP. ramoruminfection on host mortality was reduced in recently burned areas, indicating that the loss of tall, mature host canopies may temporarily dampen pathogen transmission and ‘release’ susceptible species from significant inoculum pressure.

    Synthesis. Cumulatively, our findings indicate that fire history has contributed to heterogeneous patterns of biotic disturbance and disease‐related decline across this landscape, via changes to the both the occurrence of available hosts and the demography of epidemiologically important host populations. These results highlight that human‐altered abiotic disturbances may play a foundational role in structuring infectious disease dynamics, contributing to future outbreak emergence and driving biotic disturbance regimes.

    more » « less
  3. Abstract

    Ecologists often invoke interspecific facilitation to help explain positive biodiversity–ecosystem function relationships in plant communities, but seldom test how it occurs. One mechanism through which one species may facilitate another is by ameliorating abiotic stress. Physiological experiments show that a chronic excess of light can cause stress that depresses carbon assimilation. If shading by a plant's neighbours reduces light stress enough, it may facilitate that plant's growth. If light is instead most often a limiting factor for photosynthesis, shading may have an adverse, competitive effect.

    In a temperate tree diversity experiment, we measured stem growth rates and photosynthetic physiology in broadleaf trees across a gradient of light availability imposed by their neighbours. At the extremes, trees experienced nearly full sun (monoculture), or were shaded by nearby fast‐growing conifers (shaded biculture).

    Most species had slower growth rates with larger neighbours, implying a net competitive effect. On the other hand, the two most shade‐tolerant species (Tilia americanaandAcer negundo) and the most shade‐intolerant one (Betula papyrifera) had faster stem growth rates with larger neighbours. The two shade‐tolerant species had the greatest increases in photoinhibition (reduced dark‐acclimatedFv/Fm) across the gradient of increasing light availability, which suggests they are more vulnerable to chronic light stress. While most species had lower carbon assimilation rates in the shaded biculture treatment,T. americanahad rates up to 25% higher.T. americanaalso dropped its leaves 3–4 weeks earlier in monocultures, curtailing its growing season.

    We conclude that although large neighbours can cause light limitation in shade‐intolerant species, they can also increase growth through abiotic stress amelioration in shade‐tolerant species. Finally, in shade‐intolerantB. papyrifera, we find a pattern of stem elongation in trees with larger neighbours, which suggests that a shade avoidance response may account for the apparent positive trend in stem volume.

    Synthesis. Both positive and negative species interactions in our experiment can be explained in large part by the photosynthetic responses of trees to the light environment created by their neighbours. We show that photosynthetic physiology can help explain the species interactions that underlie biodiversity–ecosystem function relationships. The insights that ecologists gain by searching for such physiological mechanisms may help us forecast species interactions under environmental change.

    more » « less
  4. Abstract

    Nitrogen (N)‐fixing trees fulfil a unique and important biogeochemical role in forests through their ability to convert atmospheric N2gas to plant‐available N. Due to their high N fixation rates, it is often assumed that N‐fixing trees facilitate neighbouring trees and enhance forest growth. This assumption is supported by some local studies but contradicted by others, leaving the overall effect of N‐fixing trees on forest growth unresolved.

    Here we use the US Forest Service's Forest Inventory and Analysis database to evaluate the effects of N‐fixing trees on plot‐scale basal area change and individual‐scale neighbouring tree demography across the coterminous US.

    First we discuss the average trends. At the plot and individual scales, N‐fixing trees do not affect the relative growth rates of neighbouring trees, but they facilitate recruitment and inhibit survival rates, suggesting that they are drivers of tree turnover in the coterminous US. At the plot scale, N‐fixing trees facilitate the basal area change of non‐fixing neighbours.

    In addition to the average trends, there is wide variation in the effect of N‐fixing trees on forest growth, ranging from strong facilitation to strong inhibition. This variation does not show a clear geographical pattern, though it does vary with certain local factors. N‐fixing trees facilitate forest growth when they are likely to be less competitive: under high N deposition and high soil moisture or when neighbouring trees occupy different niches (e.g. high foliar C:N trees and non‐fixing trees).

    Synthesis. N‐fixing trees have highly variable effects on forest growth and neighbour demographics across the coterminous US. This suggests that the effect of N‐fixing trees on forest development and carbon storage depends on local factors, which may help reconcile the conflicting results found in previous localized studies on the effect of N‐fixing trees on forest growth.

    more » « less
  5. Abstract

    Woody encroachment into grassy biomes is a global phenomenon, often resulting in a nearly complete turnover of species, with savanna specialists being replaced by forest‐adapted species. Understanding the mechanisms involved in this change is important for devising strategies for managing savannas.

    We examined how isolated trees favour woody encroachment and species turnover by overcoming dispersal limitation and environmental filtering. In a savanna released from fire in south‐eastern Brazil (Cerrado), we sampled woody plants establishing under 40 tree canopies and in paired treeless plots. These trees comprised eight species selected for habitat preference (savanna or forest) and dispersal syndrome (bird dispersed or not). We recorded dimensions of each tree, dispersal syndrome and habitat preference of recruits, and quantified the physical environment within each plot, aiming at a mechanistic understanding of woody encroachment.

    We found clear evidence that isolated trees cause nucleation and drive changes in functional composition of savanna. Effectiveness as nucleator differed among species, but was unrelated to their functional guilds (habitat preference or dispersal syndrome). The density of saplings in nuclei was partially explained by soil moisture (+), daily temperature amplitude (−) and sum of bases (−).

    Our results indicate that isolated trees act first as perches, strongly favouring bird‐dispersed species. They then act as nurse trees, considerably changing the environment in favour of forest‐adapted recruits. In the long term, as the nuclei expand and merge, savanna specialists tend to disappear and the savanna turns into a low‐diversity forest.

    Synthesis and applications. Fire suppression has allowed the nucleation process and consequently the woody encroachment and fast replacement of savanna specialists by forest species in the Cerrado. By elucidating the mechanisms behind woody encroachment, we recommend using prescribed fires to burn forest seedlings and to reduce tree canopy size wherever the management goal is to maintain the typical savanna structure and composition.

    more » « less