skip to main content


Title: Stimulated generation of deterministic platicon frequency microcombs

Dissipative Kerr soliton generation in chip-scale nonlinear resonators has recently observed remarkable advances, spanning from massively parallel communications, to self-referenced oscillators, and to dual-comb spectroscopy. Often working in the anomalous dispersion regime, unique driving protocols and dispersion in these nonlinear resonators have been examined to achieve the soliton and soliton-like temporal pulse shapes and coherent frequency comb generation. The normal dispersion regime provides a complementary approach to bridge the nonlinear dynamical studies, including the possibility of square pulse formation with flattop plateaus, or platicons. Here we report observations of square pulse formation in chip-scale frequency combs through stimulated pumping at one free spectral range and in silicon nitride rings with+55  fs2/mmnormal group velocity dispersion. Tuning of the platicon frequency comb via a varied sideband modulation frequency is examined in both spectral and temporal measurements. Determined by second-harmonic autocorrelation and cross correlation, we observe bright square platicon pulse of 17 ps pulse width on a 19 GHz flat frequency comb. With auxiliary-laser-assisted thermal stabilization, we surpass the thermal bistable dragging and extend the mode-locking access to narrower 2 ps platicon pulse states, supported by nonlinear dynamical modeling and boundary limit discussions.

 
more » « less
NSF-PAR ID:
10369460
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Photonics Research
Volume:
10
Issue:
8
ISSN:
2327-9125
Page Range / eLocation ID:
Article No. 1877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The formation and evolution of post-solitons has been discussed for quite some time both analytically and through the use of particle-in-cell (PIC) codes. It is however only recently that they have been directly observed in laser-plasma experiments. Relativistic electromagnetic (EM) solitons are localised structures that can occur in collisionless plasmas. They consist of a low-frequency EM wave trapped in a low electron number-density cavity surrounded by a shell with a higher electron number-density. Here we describe the results of an experiment in which a 100 TW Ti:sapphire laser (30 fs, 800 nm) irradiates a0.03gcm3TMPTA foam target with a focused intensityIl=9.5×1017Wcm2. A third harmonic (λprobe266nm) probe is employed to diagnose plasma motion for 25 ps after the main pulse interaction via Doppler-Spectroscopy. Both radiation-hydrodynamics and 2D PIC simulations are performed to aid in the interpretation of the experimental results. We show that the rapid motion of the probe critical-surface observed in the experiment might be a signature of post-soliton wall motion.

     
    more » « less
  2. We report soliton-effect pulse compression of low energy (∼<#comment/>25pJ), picosecond pulses on a photonic chip. An ultra-low-loss, dispersion-engineered 40-cm-long waveguide is used to compress 1.2-ps pulses by a factor of 18, which represents, to our knowledge, the largest compression factor yet experimentally demonstrated on-chip. Our scheme allows for interfacing with an on-chip picosecond source and offers a path towards a fully integrated stabilized frequency comb source.

     
    more » « less
  3. Here, we reportχ<#comment/>(3)-based optical parametric oscillation (OPO) with widely separated signal–idler frequencies from crystalline aluminum nitride microrings pumped at2µ<#comment/>m. By tailoring the width of the microring, OPO reaching toward the telecom and mid-infrared bands with a frequency separation of 64.2 THz is achieved. While dispersion engineering through changing the microring width is capable of shifting the OPO sideband by><#comment/>9THz, the OPO frequency can also be agilely tuned in the ranges of 1 and 0.1 THz, respectively, by shifting the pump wavelength and controlling the chip’s temperature. At high pump powers, the OPO sidebands further evolve into localized frequency comb lines. Such large-frequency-shift OPO with flexible wavelength tunability will lead to enhanced chip-scale light sources.

     
    more » « less
  4. The measurement and stabilization of the carrier–envelope offset frequencyfCEOvia self-referencing is paramount for optical frequency comb generation, which has revolutionized precision frequency metrology, spectroscopy, and optical clocks. Over the past decade, the development of chip-scale platforms has enabled compact integrated waveguides for supercontinuum generation. However, there is a critical need for an on-chip self-referencing system that is adaptive to different pump wavelengths, requires low pulse energy, and does not require complicated processing. Here, we demonstrate efficientfCEOstabilization of a modelocked laser with only 107 pJ of pulse energy via self-referencing in an integrated lithium niobate waveguide. We realize anf-2finterferometer through second-harmonic generation and subsequent supercontinuum generation in a single dispersion-engineered waveguide with a stabilization performance equivalent to a conventional off-chip module. ThefCEObeatnote is measured over a pump wavelength range of 70 nm. We theoretically investigate our system using a single nonlinear envelope equation with contributions from both second- and third-order nonlinearities. Our modeling reveals rich ultrabroadband nonlinear dynamics and confirms that the initial second-harmonic generation followed by supercontinuum generation with the remaining pump is responsible for the generation of a strongfCEOsignal as compared to a traditionalf-2finterferometer. Our technology provides a highly simplified system that is robust, low in cost, and adaptable for precision metrology for use outside a research laboratory.

     
    more » « less
  5. A novel optical frequency division technique, called regenerative harmonic injection locking, is used to transfer the timing stability of an optical frequency comb with a repetition rate in the millimeter wave range (∼<#comment/>300GHz) to a chip-scale mode-locked laser with a∼<#comment/>10GHzrepetition rate. By doing so, the 300 GHz optical frequency comb is optically divided by a factor of30×<#comment/>to 10 GHz. The stability of the mode-locked laser after regenerative harmonic injection locking is∼<#comment/>10−<#comment/>12at 1 s with a1/τ<#comment/>trend. To facilitate optical frequency division, a coupled opto-electronic oscillator is implemented to assist the injection locking process. This technique is exceptionally power efficient, as it uses less than100µ<#comment/>Wof optical power to achieve stable locking.

     
    more » « less