skip to main content

Title: Diversity and dynamics of the CRISPR-Cas systems associated with Bacteroides fragilis in human population
Abstract Background

CRISPR-Cas (clustered regularly interspaced short palindromic repeats—CRISPR-associated proteins) systems are adaptive immune systems commonly found in prokaryotes that provide sequence-specific defense against invading mobile genetic elements (MGEs). The memory of these immunological encounters are stored in CRISPR arrays, where spacer sequences record the identity and history of past invaders. Analyzing such CRISPR arrays provide insights into the dynamics of CRISPR-Cas systems and the adaptation of their host bacteria to rapidly changing environments such as the human gut.


In this study, we utilized 601 publicly availableBacteroides fragilisgenome isolates from 12 healthy individuals, 6 of which include longitudinal observations, and 222 availableB. fragilisreference genomes to update the understanding ofB. fragilisCRISPR-Cas dynamics and their differential activities. Analysis of longitudinal genomic data showed that some CRISPR array structures remained relatively stable over time whereas others involved radical spacer acquisition during some periods, and diverse CRISPR arrays (associated with multiple isolates) co-existed in the same individuals with some persisted over time. Furthermore, features of CRISPR adaptation, evolution, and microdynamics were highlighted through an analysis of host-MGE network, such as modules of multiple MGEs and hosts, reflecting complex interactions betweenB. fragilisand its invaders mediated through the CRISPR-Cas systems.


We made available of all annotated CRISPR-Cas more » systems and their target MGEs, and their interaction network as a web resource at We anticipate it will become an important resource for studying ofB. fragilis, its CRISPR-Cas systems, and its interaction with mobile genetic elements providing insights into evolutionary dynamics that may shape the species virulence and lead to its pathogenicity.

« less
; ;
Publication Date:
Journal Name:
BMC Genomics
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The colony-forming cyanobacteriaTrichodesmiumspp. are considered one of the most important nitrogen-fixing genera in the warm, low nutrient ocean. Despite this central biogeochemical role, many questions about their evolution, physiology, and trophic interactions remain unanswered. To address these questions, we describeTrichodesmiumpangenomic potential via significantly improved genomic assemblies from two isolates and 15 new >50% completeTrichodesmiummetagenome-assembled genomes from hand-picked,Trichodesmiumcolonies spanning the Atlantic Ocean. Phylogenomics identified ~four N2fixing clades ofTrichodesmiumacross the transect, withT. thiebautiidominating the colony-specific reads. Pangenomic analyses showed that allT. thiebautiiMAGs are enriched in COG defense mechanisms and encode a vertically inherited Type III-B Clustered Regularly Interspaced Short Palindromic Repeats and associated protein-based immunity system (CRISPR-Cas). Surprisingly, this CRISPR-Cas system was absent in allT. erythraeumgenomes, vertically inherited byT. thiebautii, and correlated with increased signatures of horizontal gene transfer. Additionally, the system was expressed in metaproteomic and transcriptomic datasets and CRISPR spacer sequences with 100% identical hits to field-assembled, putative phage genome fragments were identified. While the currently CO2-limitedT. erythraeumis expected to be a ‘winner’ of anthropogenic climate change, their genomic dearth of known phage resistance mechanisms, compared toT. thiebautii, could put this outcome in question. Thus, the clear demarcation ofT. thiebautiimaintaining CRISPR-Cas systems, whileT. erythraeumdoes not, identifiesTrichodesmiumas an ecologically importantmore »CRISPR-Cas model system, and highlights the need for more research on phage-Trichodesmiuminteractions.

    « less
  2. Abstract Background

    Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent; however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and microbial contributions to biogeochemical cycling.


    We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry studies using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite exchange, reconstruction of functional networks, and determination of microbial contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, ormore »single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, community-scale microbial functional networks using a newly defined metric “MW-score” (metabolic weight score), and metabolic Sankey diagrams. METABOLIC takes ~ 3 h with 40 CPU threads to process ~ 100 genomes and corresponding metagenomic reads within which the most compute-demanding part of hmmsearch takes ~ 45 min, while it takes ~ 5 h to complete hmmsearch for ~ 3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut.


    METABOLIC enables the consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available under GPLv3 at

    « less
  3. Abstract

    Quantum computing is a rapidly growing field with the potential to change how we solve previously intractable problems. Emerging hardware is approaching a complexity that requires increasingly sophisticated programming and control. Scaffold is an older quantum programming language that was originally designed for resource estimation for far-future, large quantum machines, and ScaffCC is the corresponding LLVM-based compiler. For the first time, we provide a full and complete overview of the language itself, the compiler as well as its pass structure. While previous works Abhariet al(2015Parallel Comput.452–17), Abhariet al(2012 Scaffold: quantum programming language, have piecemeal descriptions of different portions of this toolchain, we provide a more full and complete description in this paper. We also introduce updates to ScaffCC including conditional measurement and multidimensional qubit arrays designed to keep in step with modern quantum assembly languages, as well as an alternate toolchain targeted at maintaining correctness and low resource count for noisy-intermediate scale quantum (NISQ) machines, and compatibility with current versions of LLVM and Clang. Our goal is to provide the research community with a functional LLVM framework for quantum program analysis, optimization, and generation of executable code.

  4. Abstract Background

    Given the economic and environmental importance of allopolyploids and other species with highly duplicated genomes, there is a need for methods to distinguish paralogs, i.e. duplicate sequences within a genome, from Mendelian loci, i.e. single copy sequences that pair at meiosis. The ratio of observed to expected heterozygosity is an effective tool for filtering loci but requires genotyping to be performed first at a high computational cost, whereas counting the number of sequence tags detected per genotype is computationally quick but very ineffective in inbred or polyploid populations. Therefore, new methods are needed for filtering paralogs.


    We introduce a novel statistic,Hind/HE, that uses the probability that two reads sampled from a genotype will belong to different alleles, instead of observed heterozygosity. The expected value ofHind/HEis the same across all loci in a dataset, regardless of read depth or allele frequency. In contrast to methods based on observed heterozygosity, it can be estimated and used for filtering loci prior to genotype calling. In addition to filtering paralogs, it can be used to filter loci with null alleles or high overdispersion, and identify individuals with unexpected ploidy and hybrid status. We demonstrate that the statistic is useful at read depths asmore »low as five to 10, well below the depth needed for accurate genotype calling in polyploid and outcrossing species.


    Our methodology for estimatingHind/HEacross loci and individuals, as well as determining reasonable thresholds for filtering loci, is implemented in polyRAD v1.6, available at In large sequencing datasets, we anticipate that the ability to filter markers and identify problematic individuals prior to genotype calling will save researchers considerable computational time.

    « less
  5. Abstract

    Reverse transcriptases (RTs) are found in different systems including group II introns, Diversity Generating Retroelements (DGRs), retrons, CRISPR-Cas systems, and Abortive Infection (Abi) systems in prokaryotes. Different classes of RTs can play different roles, such as template switching and mobility in group II introns, spacer acquisition in CRISPR-Cas systems, mutagenic retrohoming in DGRs, programmed cell suicide in Abi systems, and recently discovered phage defense in retrons. While some classes of RTs have been studied extensively, others remain to be characterized. There is a lack of computational tools for identifying and characterizing various classes of RTs. In this study, we built a tool (called myRT) for identification and classification of prokaryotic RTs. In addition, our tool provides information about the genomic neighborhood of each RT, providing potential functional clues. We applied our tool to predict RTs in all complete and draft bacterial genomes, and created a collection that can be used for exploration of putative RTs and their associated protein domains. Application of myRT to metagenomes showed that gut metagenomes encode proportionally more RTs related to DGRs, outnumbering retron-related RTs, as compared to the collection of reference genomes. MyRT is both available as a standalone software ( and also throughmore »a website (

    « less