skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The State of Pore Fluid Pressure and 3‐D Megathrust Earthquake Dynamics
Abstract We study the effects of pore fluid pressure (Pf) on the pre‐earthquake, near‐fault stress state, and 3‐D earthquake rupture dynamics through six scenarios utilizing a structural model based on the 2004Mw9.1 Sumatra‐Andaman earthquake. As pre‐earthquakePfmagnitude increases, effective normal stress and fault shear strength decrease. As a result, magnitude, slip, peak slip rate, stress drop, and rupture velocity of the scenario earthquakes decrease. Comparison of results with observations of the 2004 earthquake support that pre‐earthquakePfaverages near 97% of lithostatic pressure, leading to pre‐earthquake average shear and effective normal tractions of 4–5 and 22 MPa. The megathrust in these scenarios is weak, in terms of low mean shear traction at static failure and low dynamic friction coefficient during rupture. Apparent co‐seismic principal stress rotations and absolute post‐seismic stresses in these scenarios are consistent with the variety of observed aftershock focal mechanisms. In all scenarios, the mean apparent stress rotations are larger above than below the megathrust. Scenarios with largerPfmagnitudes exhibit lower mean apparent principal stress rotations. We further evaluate pre‐earthquakePfdepth distribution. IfPffollows a sublithostatic gradient, pre‐earthquake effective normal stress increases with depth. IfPffollows the lithostatic gradient exactly, then this normal stress is constant, shifting peak slip and peak slip rate updip. This renders constraints on near‐trench strength and constitutive behavior crucial for mitigating hazard. These scenarios provide opportunity for future calibration with site‐specific measurements to constrain dynamically plausible megathrust strength andPfgradients.  more » « less
Award ID(s):
2121568
PAR ID:
10369466
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
127
Issue:
4
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physics-based dynamic rupture simulations are valuable for assessing the seismic hazard in the Cascadia subduction zone (CSZ), but require assumptions about fault stress and material properties. Geodetic slip deficit models (SDMs) may provide information about the initial stresses governing megathrust earthquake dynamics. We present a unified workflow linking SDMs to 3D dynamic rupture simulations, and 22 rupture scenarios to unravel the dynamic trade-offs of assumptions for SDMs, rigidity, and pore fluid pressure. We find that margin-wide rupture, an earthquake that ruptures the entire length of the plate boundary, requires a large slip deficit in the central CSZ. Comparisons between Gaussian and smoother, shallow-coupled SDMs show significant differences in stress distributions and rupture dynamics. Variations in depth-dependent rigidity cause competing effects, particularly in the near-trench region. Higher overall rigidity can increase fault slip but also result in lower initial shear stresses, inhibiting slip. The state of pore fluid pressure is crucial in balancing SDM-informed initial shear stresses with realistic dynamic rupture processes, especially assuming small recurrence time scaling factors. This study highlights the importance of self-consistent assumptions for rigidity and initial stresses between geodetic, structural, and dynamic rupture models, providing a foundation for future simulations of ground motions and tsunami generation. 
    more » « less
  2. Abstract Slow slip events (SSEs) have been observed in spatial and temporal proximity to megathrust earthquakes in various subduction zones, including the 2014Mw7.3 Guerrero, Mexico earthquake which was preceded by aMw7.6 SSE. However, the underlying physics connecting SSEs to earthquakes remains elusive. Here, we link 3D slow‐slip cycle models with dynamic rupture simulations across the geometrically complex flat‐slab Cocos plate boundary. Our physics‐based models reproduce key regional geodetic and teleseismic fault slip observations on timescales from decades to seconds. We find that accelerating SSE fronts transiently increase shear stress at the down‐dip end of the seismogenic zone, modulated by the complex geometry beneath the Guerrero segment. The shear stresses cast by the migrating fronts of the 2014Mw7.6 SSE are significantly larger than those during the three previous episodic SSEs that occurred along the same portion of the megathrust. We show that the SSE transient stresses are large enough to nucleate earthquake dynamic rupture and affect rupture dynamics. However, additional frictional asperities in the seismogenic part of the megathrust are required to explain the observed complexities in the coseismic energy release and static surface displacements of the Guerrero earthquake. We conclude that it is crucial to jointly analyze the long‐ and short‐term interactions and complexities of SSEs and megathrust earthquakes across several (a)seismic cycles accounting for megathrust geometry. Our study has important implications for identifying earthquake precursors and understanding the link between transient and sudden megathrust faulting processes. 
    more » « less
  3. Abstract The Mediterranean Hellenic Arc subduction zone (HASZ) has generated several 8 earthquakes and tsunamis. Seismic‐probabilistic tsunami hazard assessment typically utilizes uniform or stochastic earthquake models, which may not represent dynamic rupture and tsunami generation complexity. We present an ensemble of ten 3D dynamic rupture earthquake scenarios for the HASZ, utilizing a realistic slab geometry. Our simplest models use uniform along‐arc pre‐stresses or a single circular initial stress asperity. We then introduce progressively more complex models varying initial shear stress along‐arc, multiple asperities based on scale‐dependent critical slip weakening distance, and a most complex model blending all aforementioned heterogeneities. Thereby, regional initial conditions are constrained without relying on detailed geodetic locking models. Varying epicentral locations in the simplest, homogeneous model leads to different rupture speeds and moment magnitudes. We observe dynamic fault slip penetrating the shallow slip‐strengthening region and affecting seafloor uplift. Off‐fault plastic deformation can double vertical seafloor uplift. A single‐asperity model generates a 8 scenario resembling the 1303 Crete earthquake. Using along‐strike varying initial stresses results in 8.0–8.5 dynamic rupture scenarios with diverse slip rates and uplift patterns. The model with the most heterogeneous initial conditions yields a 7.5 scenario. Dynamic rupture complexity in prestress and fracture energy tends to lower earthquake magnitude but enhances tsunamigenic displacements. Our results offer insights into the dynamics of potential large Hellenic Arc megathrust earthquakes and may inform future physics‐based joint seismic and tsunami hazard assessments. 
    more » « less
  4. Abstract The Shumagin seismic gap along the Alaska Peninsula experienced a major,MW7.8, interplate thrust earthquake on 22 July 2020. Several available finite‐fault inversions indicate patchy slip of up to 4 m at 8–48 km depth. There are differences among the models in peak slip and absolute placement of slip on the plate boundary, resulting from differences in data distributions, model parameterizations, and inversion algorithms. Two representative slip models obtained from inversions of large seismic and geodetic data sets produce very different tsunami predictions at tide gauges and deep‐water pressure sensors (DART stations), despite having only secondary differences in slip distribution. This is found to be the result of the acute sensitivity of the tsunami excitation for rupture below the continental shelf in proximity to an abrupt shelf break. Iteratively perturbing seismic and geodetic inversions by constraining fault model extent along dip and strike, we obtain an optimal rupture model compatible with teleseismicPandSHwaves, regional three‐component broadband and strong‐motion seismic recordings, hr‐GNSS time series and static offsets, as well as tsunami recordings at DART stations and regional and remote tide gauges. Slip is tightly bounded between 25 and 40 km depth, the up‐dip limit of slip in the earthquake is resolved to be well‐inland of the shelf break, and the rupture extent along strike is well‐constrained. The coseismic slip increased Coulomb stress on the shallow plate boundary extending to the trench, but the frictional behavior of the megathrust below the continental slope remains uncertain. 
    more » « less
  5. Abstract On 29 July 2021, anMW8.2 thrust‐faulting earthquake ruptured offshore of the Alaska Peninsula within the rupture zone of the 1938MW8.2 earthquake. The spatiotemporal distribution of megathrust slip is resolved by jointly inverting regional and teleseismic broadband waveforms along with co‐seismic static and high‐rate GNSS displacements. The primarily unilateral rupture expanded northeastward, away from the rupture zone of the 22 July 2020MW7.8 Shumagin earthquake. Large slip extends along approximately 175 km, spanning about two third of the estimated 1938 aftershock zone, with well‐bounded depth from 20 to 40 km, and up to 8.6 m slip near the hypocenter. The rupture terminated in the eastern portion of the 1938 aftershock zone in a region of very large geodetic slip deficit where peak slip appears to have occurred in the 1938 rupture. The 2021 and 1938 events do not have similar slip distributions and do not indicate persistent asperities. 
    more » « less