This study provides new data on the properties of aerosol iron (Fe) over the Antarctic Peninsula, one of the fastest warming regions on Earth in recent decades. Atmospheric deposition delivers Fe, a limiting micronutrient, to the Southern Ocean, and aerosol particle size influences the air‐to‐sea deposition rate and fractional solubility of aerosol Fe. Size‐segregated aerosols were collected at Palmer Station on the West Antarctic Peninsula during austral summer 2016–2017. Results show single‐mode size distribution of aerosol Fe, peaking at 4.4 μm diameter. The average concentration of total aerosol Fe was 1.3 (±0.40) ng m−3(range 0.74–1.8 ng m−3). High concentrations of total aerosol Fe occurred in January, implying increased Fe source strength then. Total labile Fe varied between 0.019 and 0.095 ng m−3, and labile Fe (II) accounted for ~90% of the total labile Fe. The average fractional solubility for total Fe was 3.8% (±1.5%) (range 2.5–7.3%). Estimated dry deposition fluxes for the study period were 3.2 μg m−2 year−1for total labile Fe and 83 μg m−2 year−1for total Fe in aerosols. We speculate that local and regional dust sources in Antarctica contributed to the observed aerosol Fe in austral summer and that warming on the Antarctic Peninsula during the past half century may have increased the formation of dust sources in this region. The potential biogeochemical impact of atmospheric Fe input to the West Antarctic Peninsula shelf waters and adjacent pelagic surface waters of the Southern Ocean may need to be re‐evaluated.
Atmospheric iron solubility varies depending on whether the particles are collected in rural or urban areas, with urban areas showing increased iron solubility. In this study, we investigate if the iron species present in different environments affects its ultimate solubility. Field data are presented from the Platte River Air Pollution and Photochemistry Experiment (PRAPPE), aimed at understanding the interactions between organic carbon and trace elements in atmospheric particulate matter (PM). 24‐hr PM2.5samples were collected during the summer and winter (2016–2017), at three different sites on the Eastern Colorado plains: an urban, agricultural, and a mixed site. Downtown Denver had an average total and water‐soluble iron air concentration of 181.2 and 7.7 ng m−3, respectively. Platteville, the mixed site, had an average of total iron of 76.1 ng m−3, with average water‐soluble iron concentration of 9.1 ng m−3. Jackson State Park (rural/agricultural) had the lowest total iron average of 31.5 ng m−3and the lowest water‐soluble iron average, 1.3 ng m−3. The iron oxidation state and chemical speciation of 97 samples across all sites and seasons was probed by X‐ray absorption near edge structure (XANES) spectroscopy. The most common iron phases observed were almandine (Fe₃Al₂Si₃O₁₂) (Denver 21%, Platteville 16%, Jackson 24%), magnetite (Fe3O4) (Denver 9%, Platteville 4%, Jackson 5%) and Fe (III)dextran (Denver 5%, Platteville 13%, Jackson 5%), a surrogate for Fe‐organic complexes. Additionally, native iron [Fe(0)] was found in significant amounts at all sites. No correlation was observed between iron solubility and iron oxidation state or chemical speciation.
more » « less- PAR ID:
- 10369534
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 7
- Issue:
- 10
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Riverine dissolved iron (Fe) affects water color, nutrients, and marine carbon cycling. Fe size and coupling with dissolved organic matter (DOM), in part, modulates the biogeochemical roles of riverine Fe. We used size fractionation to operationally define dissolved Fe (< 0.22
μ m) into soluble (< 0.02μ m) and colloidal (0.02–0.22μ m) fractions in order to characterize the downstream drivers, concentrations, and fluxes of Fe across season and hydrologic regime at the freshwater Connecticut River mainstem, which we sampled bi‐weekly for 2 yrs. Drivers of colloidal and soluble Fe concentrations were markedly different. The response of colloidal Fe concentration to changes in discharge was modulated by water temperature; colloidal Fe decreased with increasing discharge at temperatures < 10.5°C, but increased with increasing discharge at temperatures > 10.5°C. Conversely, soluble Fe concentrations were only positively correlated to discharge at high temperatures (> 20°C). Soluble Fe was strongly positively correlated to a humic‐like DOM fluorescence component, suggesting coupling with DOM subsets, potentially through complexation. While average colloidal Fe fluxes varied twofold seasonally, soluble Fe fluxes varied ninefold; therefore, soluble Fe variability was more important to the overall dissolved Fe variability than colloidal Fe, despite lower concentrations. Seasonal Fe fluxes were decoupled from discharge: dissolved and soluble Fe fluxes were greatest in the fall, whereas discharge was greatest in the spring. Fluxes of soluble Fe, which may be more bioavailable and more likely to be exported to the ocean, were lowest in the summer when downstream biological demand is high, having implications for primary productivity and iron uptake. -
The increase in fires at the wildland–urban interface has raised concerns about the potential environmental impact of ash remaining after burning. Here, we examined the concentrations and speciation of iron-bearing nanoparticles in wildland–urban interface ash. Total iron concentrations in ash varied between 4 and 66 mg g −1 . Synchrotron X-ray absorption near-edge structure (XANES) spectroscopy of bulk ash samples was used to quantify the relative abundance of major Fe phases, which were corroborated by transmission electron microscopy measurements. Maghemite (γ-(Fe 3+ ) 2 O 3 ) and magnetite (γ-Fe 2+ (Fe 3+ ) 2 O 4 ) were detected in most ashes and accounted for 0–90 and 0–81% of the spectral weight, respectively. Ferrihydrite (amorphous Fe( iii )–hydroxide, (Fe 3+ ) 5 HO 8 ·4H 2 O), goethite (α-Fe 3+ OOH), and hematite (α-Fe 3+ 2 O 3 ) were identified less frequently in ashes than maghemite and magnetite and accounted for 0–65, 0–54, and 0–50% of spectral weight, respectively. Other iron phases identified in ashes include wüstite (Fe 2+ O), zerovalent iron, FeS, FeCl 2 , FeCl 3 , FeSO 4 , Fe 2 (SO 4 ) 3 , and Fe(NO 3 ) 3 . Our findings demonstrate the impact of fires at the wildland–urban interface on iron speciation; that is, fires can convert iron oxides ( e.g. , maghemite, hematite, and goethite) to reduced iron phases such as magnetite, wüstite, and zerovalent iron. Magnetite concentrations ( e.g. , up to 25 mg g −1 ) decreased from black to gray to white ashes. Based on transmission electron microscopy (TEM) analyses, most of the magnetite nanoparticles were less than 500 nm in size, although larger particles were identified. Magnetite nanoparticles have been linked to neurodegenerative diseases as well as climate change. This study provides important information for understanding the potential environmental impacts of fires at the wildland–urban interface, which are currently poorly understood.more » « less
-
Changes in bioavailable dust-borne iron (Fe) supply to the iron-limited Southern Ocean may influence climate by modulating phytoplankton growth and CO2fixation into organic matter that is exported to the deep ocean. The chemical form (speciation) of Fe impacts its bioavailability, and glacial weathering produces highly labile and bioavailable Fe minerals in modern dust sources. However, the speciation of dust-borne Fe reaching the iron-limited Southern Ocean on glacial−interglacial timescales is unknown, and its impact on the bioavailable iron supply over geologic time has not been quantified. Here we use X-ray absorption spectroscopy on subantarctic South Atlantic and South Pacific marine sediments to reconstruct dust-borne Fe speciation over the last glacial cycle, and determine the impact of glacial activity and glaciogenic dust sources on bioavailable Fe supply. We show that the Fe(II) content, as a percentage of total dust-borne Fe, increases from ∼5 to 10% in interglacial periods to ∼25 to 45% in glacial periods. Consequently, the highly bioavailable Fe(II) flux increases by a factor of ∼15 to 20 in glacial periods compared with the current interglacial, whereas the total Fe flux increases only by a factor of ∼3 to 5. The change in Fe speciation is dominated by primary Fe(II) silicates characteristic of glaciogenic dust. Our results suggest that glacial physical weathering increases the proportion of highly bioavailable Fe(II) in dust that reaches the subantarctic Southern Ocean in glacial periods, which represents a positive feedback between glacial activity and cold glacial temperatures.
-
Abstract Complex oxide films stabilized by epitaxial growth can exhibit large populations of point defects which have important effects on their properties. The site occupancy of pulsed laser‐deposited epitaxial terbium iron garnet (TbIG) films with excess terbium (Tb) is analyzed, in which the terbium:iron (Tb:Fe)ratio is 0.86 compared to the stoichiometric value of 0.6. The magnetic properties of the TbIG are sensitive to site occupancy, exhibiting a higher compensation temperature (by 90 K) and a lower Curie temperature (by 40 K) than the bulk Tb3Fe5O12garnet. Data derived from X‐ray core‐level spectroscopy, magnetometry, and molecular field coefficient modeling are consistent with occupancy of the dodecahedral sites by Tb3+, the octahedral sites by Fe3+, Tb3+and vacancies, and the tetrahedral sites by Fe3+and vacancies. Energy dispersive X‐ray spectroscopy in a scanning transmission electron microscope provides direct evidence of TbFeantisites. A small fraction of Fe2+is present, and oxygen vacancies are inferred to be present to maintain charge neutrality. Variation of the site occupancies provides a path to considerable manipulation of the magnetic properties of epitaxial iron garnet films and other complex oxides, which readily accommodate stoichiometries not found in their bulk counterparts.