Abstract A novel force sensor exploiting the interaction between plasmonic nanostructures and upconversion nanoparticles (UCNPs) is reported. The nanosensor is composed of a gold nanodisk and UCNPs separated by a flexible polymer layer. The gold nanodisk is designed to exhibit a plasmon resonance that selectively enhances one of the emission bands of the UCNPs while leaving the other ones largely unaffected. As the nanosensor is compressed or stretched by an external force, the polymer layer thickness changes, modulating the plasmon‐UCNP coupling. The resulting changes in the luminescence intensity provide the basis for sensing. Furthermore, the nanosensor employs ratiometric sensing, which makes it highly robust against any environmental variations. The nanosensors exhibit two orders of magnitude higher responsivity than previously reported UCNP‐based force sensors. They can be prepared as an on‐chip sensor array or in a colloidal solution, making them suitable for a variety of applications in biology and robotics.
more »
« less
True FRET‐Based Sensing of pH via Separation of FRET and Photon Reabsorption
Abstract Förster resonance energy transfer (FRET)‐based devices have been extensively researched as potential biosensors due to their highly localized responsivity. In particular, dye‐conjugated upconverting nanoparticles (UCNPs) are among the most promising FRET‐based sensor candidates. UCNPs have a multi‐modal emission profile that allows for ratiometric sensing, and by conjugating a biosensitive dye to their surface, this profile can be used to measure localized variations in biological parameters. However, the complex nature of the UCNP energy profile as well as reabsorption of emitted photons must be taken into account in order to properly sense the target parameters. To the authors’ knowledge, no proposed UCNP‐based sensor has accurately taken care of these intricacies. In this article, the authors account for these complexities by creating a FRET‐based sensor that measures pH. This sensor utilizes Thulium (Tm3+)‐doped UCNPs and the fluorescent dye fluorescein isothiocyanate (FITC). It is first demonstrated that photon reabsorption is a serious issue for the 475 nm Tm3+emission, thereby limiting its use in FRET‐based sensing. It is then shown that by taking the ratio of the 646 and 800 nm emissions rather than the more popular 475 nm one, it is possible to measure pH exclusively through FRET.
more »
« less
- Award ID(s):
- 2029559
- PAR ID:
- 10369585
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Optical Materials
- Volume:
- 10
- Issue:
- 15
- ISSN:
- 2195-1071
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Metal surfaces can alter the luminescence emitted by nanoparticles through a variety of effects including quenching, plasmonic enhancement, and optical interference-, reflection-, and absorption-related phenomena. While many of these effects are well-established, multiple such effects typically occur in parallel in realistic measurement scenarios, making the relative importance of each effect difficult to discern. As imaging and sensing applications in which luminescent nanoparticles are placed on metal surfaces continue to grow, a detailed understanding of how metal surfaces modify nanoparticle luminescence is increasingly important for optimizing and ensuring correct interpretation of the measurement results. Here, we systematically investigate how metal surfaces affect the luminescence emitted by individual NaYF4:Yb3+,Er3+ upconverting nanoparticles (UCNPs) ∼27 nm in diameter using a judiciously selected set of five different metal coatings with varying optical and thermal properties. We find that the average single-UCNP emission intensity is determined by an interplay between quenching and reflection effects. Consequently, the average single-UCNP emission intensity is correlated with the reflectance of the underlying metal coating, but non-radiative decay rate changes also play an important role, leading to different average single-UCNP emission intensities for metal coatings with near-identical reflectances. We also evaluate metal surface effects on the common ratiometric thermometry signal of NaYF4:Yb3+,Er3+ UCNPs and find that the intrinsic temperature dependence of the luminescence intensity ratio is unaffected by the underlying material. The only differences observed are the result of laser-induced heating for sufficiently absorbing metal coatings on low thermal conductivity substrates, in accordance with the predictions of an analytical heat transfer model.more » « less
-
null (Ed.)The mesoporous nature of silica nanoparticles provides a novel platform for the development of ultrabright fluorescent particles, which have organic molecular fluorescent dyes physically encapsulated inside the silica pores. The close proximity of the dye molecules, which is possible without fluorescence quenching, gives an advantage of building sensors using FRET coupling between the encapsulated dye molecules. Here we present the use of this approach to demonstrate the assembly of ultrabright fluorescent ratiometric sensors capable of simultaneous acidity (pH) and temperature measurements. FRET pairs of the temperature-responsive, pH-sensitive and reference dyes are physically encapsulated inside the silica matrix of ~50 nm particles. We demonstrate that the particles can be used to measure both the temperature in the biologically relevant range (20 to 50 °C) and pH within 4 to 7 range with the error (mean absolute deviation) of 0.54 °C and 0.09, respectively. Stability of the sensor is demonstrated. The sensitivity of the sensor ranges within 0.2–3% °C−1 for the measurements of temperature and 2–6% pH−1 for acidity.more » « less
-
Herein, an ionic material (IM) with Förster Resonance Energy Transfer (FRET) characteristics is reported for the first time. The IM is designed by pairing a Nile Blue A cation (NBA+) with an anionic near-infrared (NIR) dye, IR820−, using a facile ion exchange reaction. These two dyes absorb at different wavelength regions. In addition, NBA+ fluorescence emission spectrum overlaps with IR820− absorption spectrum, which is one requirement for the occurrence of the FRET phenomenon. Therefore, the photophysical properties of the IM were studied in detail to investigate the FRET mechanism in IM for potential dye sensitized solar cell (DSSCs) application. Detailed examination of photophysical properties of parent compounds, a mixture of the parent compounds, and the IM revealed that the IM exhibits FRET characteristics, but not the mixture of two dyes. The presence of spectator counterion in the mixture hindered the FRET mechanism while in the IM, both dyes are in close proximity as an ion pair, thus exhibiting FRET. All FRET parameters such as spectral overlap integral, Förster distance, and FRET energy confirm the FRET characteristics of the IM. This article presents a simple synthesis of a compound with FRET properties which can be further used for a variety of applications.more » « less
-
Abstract Nonlinear microscopy provides excellent depth penetration and axial sectioning for 3D imaging, yet widespread adoption is limited by reliance on expensive ultrafast pulsed lasers. This work circumvents such limitations by employing rare‐earth doped upconverting nanoparticles (UCNPs), specifically Yb3+/Tm3+co‐doped NaYF4nanocrystals, which exhibit strong multimodal nonlinear optical responses under continuous‐wave (CW) excitation. These UCNPs emit multiple wavelengths at UV (λ ≈ 450 nm), blue (λ ≈ 450 nm), and NIR (λ ≈ 800 nm), whose intensities are nonlinearly governed by excitation power. Exploiting these properties, multi‐colored nonlinear emissions enable functional imaging of cerebral blood vessels in deep brain. Using a simple optical setup, high resolution in vivo 3D imaging of mouse cerebrovascular networks at depths up to 800 µmm is achieved, surpassing performance of conventional imaging methods using CW lasers. In vivo cerebrovascular flow dynamics is also visualized with wide‐field video‐rate imaging under low‐powered CW excitation. Furthermore, UCNPs enable depth‐selective, 3D‐localized photo‐modulation through turbid media, presenting spatiotemporally targeted light beacons. This innovative approach, leveraging UCNPs' intrinsic nonlinear optical characteristics, significantly advances multimodal nonlinear microscopy with CW lasers, opening new opportunities in bio‐imaging, remote optogenetics, and photodynamic therapy.more » « less
An official website of the United States government
