Physical properties of the extracellular matrix (ECM) affect cell behaviors ranging from cell adhesion and migration to differentiation and gene expression, a process known as mechanotransduction. While most studies have focused on the impact of ECM stiffness, using linearly elastic materials such as polyacrylamide gels as cell culture substrates, biological tissues and ECMs are viscoelastic, which means they exhibit time‐dependent mechanical responses and dissipate mechanical energy. Recent studies have revealed ECM viscoelasticity, independent of stiffness, as a critical physical parameter regulating cellular processes. These studies have used biomaterials with tunable viscoelasticity as cell‐culture substrates, with alginate hydrogels being one of the most commonly used systems. Here, we detail the protocols for three approaches to modulating viscoelasticity in alginate hydrogels for 2D and 3D cell culture studies, as well as the testing of their mechanical properties. Viscoelasticity in alginate hydrogels can be tuned by varying the molecular weight of the alginate polymer, changing the type of crosslinker—ionic versus covalent—or by grafting short poly(ethylene‐glycol) (PEG) chains to the alginate polymer. As these approaches are based on commercially available products and simple chemistries, these protocols should be accessible for scientists in the cell biology and bioengineering communities. © 2021 Wiley Periodicals LLC.
Characterizing the mechanical properties of single cells is important for developing descriptive models of tissue mechanics and improving the understanding of mechanically driven cell processes. Standard methods for measuring single‐cell mechanical properties typically provide isotropic mechanical descriptions. However, many cells exhibit specialized geometries
- PAR ID:
- 10369589
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Current Protocols
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2691-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Basic Protocol 1 : Tuning viscoelasticity by varying alginate molecular weightBasic Protocol 2 : Tuning viscoelasticity with ionic versus covalent crosslinkingBasic Protocol 3 : Tuning viscoelasticity by adding PEG spacers to alginate chainsSupport Protocol 1 : Testing mechanical properties of alginate hydrogelsSupport Protocol 2 : Conjugating cell‐adhesion peptide RGD to alginate -
Abstract Base‐editing technologies enable the introduction of point mutations at targeted genomic sites in mammalian cells, with higher efficiency and precision than traditional genome‐editing methods that use DNA double‐strand breaks, such as zinc finger nucleases (ZFNs), transcription‐activator‐like effector nucleases (TALENs), and the clustered regularly interspaced short palindromic repeats (CRISPR)–CRISPR‐associated protein 9 (CRISPR‐Cas9) system. This allows the generation of single‐nucleotide‐variant isogenic cell lines (i.e., cell lines whose genomic sequences differ from each other only at a single, edited nucleotide) in a more time‐ and resource‐effective manner. These single‐nucleotide‐variant clonal cell lines represent a powerful tool with which to assess the functional role of genetic variants in a native cellular context. Base editing can therefore facilitate genotype‐to‐phenotype studies in a controlled laboratory setting, with applications in both basic research and clinical applications. Here, we provide optimized protocols (including experimental design, methods, and analyses) to design base‐editing constructs, transfect adherent cells, quantify base‐editing efficiencies in bulk, and generate single‐nucleotide‐variant clonal cell lines. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : Design and production of plasmids for base‐editing experimentsBasic Protocol 2 : Transfection of adherent cells and harvesting of genomic DNABasic Protocol 3 : Genotyping of harvested cells using Sanger sequencingAlternate Protocol 1 : Next‐generation sequencing to quantify base editingBasic Protocol 4 : Single‐cell isolation of base‐edited cells using FACSAlternate Protocol 2 : Single‐cell isolation of base‐edited cells using dilution platingBasic Protocol 5 : Clonal expansion to generate isogenic cell lines and genotyping of clones -
Abstract In this invited article, we explain technical aspects of the lymphocytic choriomeningitis virus (LCMV) system, providing an update of a prior contribution by Matthias von Herrath and J. Lindsay Whitton. We provide an explanation of the LCMV infection models, highlighting the importance of selecting an appropriate route and viral strain. We also describe how to quantify virus‐specific immune responses, followed by an explanation of useful transgenic systems. Specifically, our article will focus on the following protocols. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : LCMV infection routes in miceSupport Protocol 1 : Preparation of LCMV stocksASSAYS TO MEASURE LCMV TITERS Support Protocol 2 : Plaque assaySupport Protocol 3 : Immunofluorescence focus assay (IFA) to measure LCMV titerMEASUREMENT OF T CELL AND B CELL RESPONSES TO LCMV INFECTION Basic Protocol 2 : Triple tetramer staining for detection of LCMV‐specific CD8 T cellsBasic Protocol 3 : Intracellular cytokine staining (ICS) for detection of LCMV‐specific T cellsBasic Protocol 4 : Enumeration of direct ex vivo LCMV‐specific antibody‐secreting cells (ASC)Basic Protocol 5 : Limiting dilution assay (LDA) for detection of LCMV‐specific memory B cellsBasic Protocol 6 : ELISA for quantification of LCMV‐specific IgG antibodySupport Protocol 4 : Preparation of splenic lymphocytesSupport Protocol 5 : Making BHK21‐LCMV lysateBasic Protocol 7 : Challenge modelsTRANSGENIC MODELS Basic Protocol 8 : Transfer of P14 cells to interrogate the role of IFN‐I on CD8 T cell responsesBasic Protocol 9 : Comparing the expansion of naïve versus memory CD4 T cells following chronic viral challenge -
null (Ed.)Mammalian cells have evolved complex mechanical connections to their microenvironment, including focal adhesion clusters that physically connect the cytoskeleton and the extracellular matrix. This mechanical link is also part of the cellular machinery to transduce, sense and respond to external forces. Although methods to measure cell attachment and cellular traction forces are well established, these are not capable of quantifying force transmission through the cell body to adhesion sites. We here present a novel approach to quantify intracellular force transmission by combining microneedle shearing at the apical cell surface with traction force microscopy at the basal cell surface. The change of traction forces exerted by fibroblasts to underlying polyacrylamide substrates as a response to a known shear force exerted with a calibrated microneedle reveals that cells redistribute forces dynamically under external shearing and during sequential rupture of their adhesion sites. Our quantitative results demonstrate a transition from dipolar to monopolar traction patterns, an inhomogeneous distribution of the external shear force to the adhesion sites as well as dynamical changes in force loading prior to and after the rupture of single adhesion sites. Our strategy of combining traction force microscopy with external force application opens new perspectives for future studies of force transmission and mechanotransduction in cells.more » « less
-
Abstract Science and medicine have become increasingly “human‐centric” over the years. A growing shift away from the use of animals in basic research has led to the development of sophisticated in vitro models of various tissues utilizing human‐derived cells to study physiology and disease. The human cornea has likewise been modeled in vitro using primary cells derived from corneas obtained from cadavers or post‐transplantation. By utilizing a cell's intrinsic ability to maintain its tissue phenotype in a pre‐designed microenvironment containing the required growth factors, physiological temperature, and humidity, tissue‐engineered corneas can be grown and maintained in culture for relatively long periods of time on the scale of weeks to months. Due to its transparency and avascularity, the cornea is an optimal tissue for studies of extracellular matrix and cell‐cell interactions, toxicology and permeability of drugs, and underlying mechanisms of scarring and tissue regeneration. This paper describes methods for the cultivation of corneal keratocytes, fibroblasts, epithelial, and endothelial cells for in vitro applications. We also provide detailed, step‐by‐step protocols for assembling and culturing 3D constructs of the corneal stroma, epithelial‐ and endothelial‐stromal co‐cultures and isolation of extracellular vesicles. © 2020 Wiley Periodicals LLC.
Basic Protocol 1 : Isolating and culturing human corneal keratocytes and fibroblastsBasic Protocol 2 : Isolating and culturing human corneal epithelial cellsBasic Protocol 3 : Isolating and culturing human corneal endothelial cellsBasic Protocol 4 : 3D corneal stromal construct assemblyBasic Protocol 5 : 3D corneal epithelial‐stromal construct assemblyBasic Protocol 6 : 3D corneal endothelial‐stromal construct assemblyBasic Protocol 7 : Isolating extracellular vesicles from corneal cell conditioned mediumSupport Protocol : Cryopreserving human corneal fibroblasts, corneal epithelial cells, and corneal endothelial cells