skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vertebrate Phenological Plasticity: From Molecular Mechanisms to Ecological and Evolutionary Implications
Abstract Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science.  more » « less
Award ID(s):
2209765
PAR ID:
10369635
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative and Comparative Biology
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The seasonal timing of life history transitions is often critical to fitness, and many organisms rely upon environmental cues to match life cycle events with favorable conditions. In plants, the timing of seed germination is mediated by seasonal cues such as rainfall and temperature. Variation in cue responses among species can reflect evolutionary processes and adaptation to local climate and can affect vulnerability to changing conditions. Indeed, climate change is altering the timing of precipitation, and germination responses to such change can have consequences for individual fitness, population dynamics, and species distributions. Here, we assessed responses to the seasonal timing of germination‐triggering rains for eleven species spanning theStreptanthus/Caulanthusclade (Brassicaceae). To do so, we experimentally manipulated the onset date of rainfall events, measured effects on germination fraction, and evaluated whether responses were constrained by evolutionary relationships across the phylogeny. We then explored the possible consequences of these responses to contemporary shifts in precipitation timing. Germination fractions decreased with later onset of rains and cooler temperatures for all but threeCaulanthusspecies. Species' germination responses to the timing of rainfall and seasonal temperatures were phylogenetically constrained, withCaulanthusspecies appearing less responsive. Further, four species are likely already experiencing significant decreases in germination fractions with observed climate change, which has shifted the timing of rainfall towards the cooler, winter months in California. Overall, our findings emphasize the sensitivity of germination to seasonal conditions, underscore the importance of interacting environmental cues, and highlight vulnerability to shifting precipitation patterns with climate change, particularly in more northern, mesic species. 
    more » « less
  2. Global change is altering the phenology and geographic ranges of flowering species, with potentially profound consequences for the timing and composition of floral resources and the seasonal structure of ecological communities. However, shifts in flowering phenology and species distributions have historically been studied in isolation due to disciplinary silos and limited data, leaving critical gaps in our understanding of their combined effects. To address this, we used millions of herbarium and occurrence records to model phenological and range shifts for 2,837 plant species in the United States across historical, recent, and projected climate and land cover conditions, enabling us to scale responses from species to communities, and from local to continental geographies. Our analysis reveals that communities are shifting toward earlier, longer flowering seasons in most biomes, with co-flowering species richness increasing at the edges of the season and declining at historical peaks—trends projected to intensify under ongoing environmental trends. Although these shifts operate concurrently, they affect different aspects of the flowering season: phenological changes primarily alter seasonality—its start, end, and duration—and co-flowering diversity at the edges of the season, while range shifts more strongly influence co-flowering species richness during historical seasonal peaks, and attributes tied to community composition, such as patterns of flowering synchrony among co-occurring species. Together, these results demonstrate that shifts in phenology and species ranges act synergistically to restructure the flowering seasons across North America, revealing wide variation in the pace and magnitude of change among biomes. 
    more » « less
  3. Climate change is shifting the phenology of migratory animals earlier; yet an understanding of how climate change leads to variable shifts across populations, species and communities remains hampered by limited spatial and taxonomic sampling. In this study, we used a hierarchical Bayesian model to analyse 88,965 site‐specific arrival dates from 222 bird species over 21 years to investigate the role of temperature, snowpack, precipitation, the El‐Niño/Southern Oscillation and the North Atlantic Oscillation on the spring arrival timing of Nearctic birds. Interannual variation in bird arrival on breeding grounds was most strongly explained by temperature and snowpack, and less strongly by precipitation and climate oscillations. Sensitivity of arrival timing to climatic variation exhibited spatial nonstationarity, being highly variable within and across species. A high degree of heterogeneity in phenological sensitivity suggests diverging responses to ongoing climatic changes at the population, species and community scale, with potentially negative demographic and ecological consequences. 
    more » « less
  4. Phenological shifts have been observed among marine species due to climate change. Modeling changes in fish spawning aggregations (FSAs) under climate change can be useful for adaptive management, because it can allow managers to adjust conservation strategies in the context of specific life history and phenological responses. We modeled effects of climate change on the distribution and phenology of Caribbean FSAs, examining 4 snapper and 4 grouper species. An ecological niche model was used to link FSAs with environmental conditions from remote sensing and project FSA distribution and seasonality under RCP8.5. We found significant differences between groupers and snappers in response to warming. While there was variation among species, groupers experienced slight delays in spawning season, a greater loss of suitable ocean habitat (average loss: 72.75%), and poleward shifts in FSA distribution. Snappers had larger shifts towards earlier phenology, with a smaller loss of suitable ocean habitat (average loss: 24.25%), excluding gray snapper, which gained habitat. Snappers exhibited interspecific variability in latitudinal distribution shifts. Snapper FSAs appeared more resilient to climate change and occupy wider and warmer spawning temperature ranges, while groupers prefer cooler spawning seasons. Consequently, groupers may lose more suitable ocean spawning habitat sooner due to climate change. When comparing species, there were trade-offs among climate change responses in terms of distribution shifts, phenology changes, and declines in habitat suitability. Understanding such trade-offs can help managers prioritize marine protected area locations and determine the optimal timing of seasonal fishing restrictions to protect FSAs vulnerable to fishing pressure in a changing climate. 
    more » « less
  5. Abstract Many organisms use environmental cues to time events in their annual cycle, such as reproduction and migration, with the appropriate timing of such events impacting survival and reproduction. As the climate changes, evolved mechanisms of cue use may facilitate or limit the capacity of organisms to adjust phenology accordingly, and organisms often integrate multiple cues to fine-tune the timing of annual events. Yet, our understanding of how suites of cues are integrated to generate observed patterns of seasonal timing remains nascent. We present an overarching framework to describe variation in the process of cue integration in the context of seasonal timing. This framework incorporates both cue dependency and cue interaction. We then summarize how existing empirical findings across a range of vertebrate species and life cycle events fit into this framework. Finally, we use a theoretical model to explore how variation in modes of cue integration may impact the ability of organisms to adjust phenology adaptively in the face of climate change. Such a theoretical approach can facilitate the exploration of complex scenarios that present challenges to study in vivo but capture important complexity of the natural world. 
    more » « less