skip to main content


Title: Vertebrate Phenological Plasticity: From Molecular Mechanisms to Ecological and Evolutionary Implications
Abstract

Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science.

 
more » « less
NSF-PAR ID:
10369635
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative and Comparative Biology
ISSN:
1540-7063
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phenological shifts have been observed among marine species due to climate change. Modeling changes in fish spawning aggregations (FSAs) under climate change can be useful for adaptive management, because it can allow managers to adjust conservation strategies in the context of specific life history and phenological responses. We modeled effects of climate change on the distribution and phenology of Caribbean FSAs, examining 4 snapper and 4 grouper species. An ecological niche model was used to link FSAs with environmental conditions from remote sensing and project FSA distribution and seasonality under RCP8.5. We found significant differences between groupers and snappers in response to warming. While there was variation among species, groupers experienced slight delays in spawning season, a greater loss of suitable ocean habitat (average loss: 72.75%), and poleward shifts in FSA distribution. Snappers had larger shifts towards earlier phenology, with a smaller loss of suitable ocean habitat (average loss: 24.25%), excluding gray snapper, which gained habitat. Snappers exhibited interspecific variability in latitudinal distribution shifts. Snapper FSAs appeared more resilient to climate change and occupy wider and warmer spawning temperature ranges, while groupers prefer cooler spawning seasons. Consequently, groupers may lose more suitable ocean spawning habitat sooner due to climate change. When comparing species, there were trade-offs among climate change responses in terms of distribution shifts, phenology changes, and declines in habitat suitability. Understanding such trade-offs can help managers prioritize marine protected area locations and determine the optimal timing of seasonal fishing restrictions to protect FSAs vulnerable to fishing pressure in a changing climate. 
    more » « less
  2. Plant phenology has been shifting dramatically in response to climate change, a shift that may have significant and widespread ecological consequences. Of particular concern are tropical biomes, which represent the most biodiverse and imperiled regions of the world. However, compared to temperate floras, we know little about phenological responses of tropical plants because long-term observational datasets from the tropics are sparse. Herbarium specimens have greatly increased our phenological knowledge in temperate regions, but similar data have been underutilized in the tropics and their suitability for this purpose has not been broadly validated. Here, we compare phenological estimates derived from field observational data (i.e., plot surveys) and herbarium specimens at various spatial and taxonomic scales to determine whether specimens can provide accurate estimations of reproductive timing and its spatial variation. Here we demonstrate that phenological estimates from field observations and herbarium specimens coincide well. Fewer than 5% of the species exhibited significant differences between flowering periods inferred from field observations versus specimens regardless of spatial aggregation. In contrast to studies based on field records, herbarium specimens sampled much larger geographic and climatic ranges, as has been documented previously for temperate plants, and effectively captured phenological responses across varied environments. Herbarium specimens are verified to be a vital resource for closing the gap in our phenological knowledge of tropical systems. Tropical plant reproductive phenology inferred from herbarium records are widely congruent with field observations, suggesting that they can (and should) be used to investigate phenological variation and their associated environmental cues more broadly across tropical biomes. 
    more » « less
  3. Phenological shifts are a widely studied consequence of climate change. Little is known, however, about certain critical phenological events, nor about mechanistic links between shifts in different life-history stages of the same organism. Among angiosperms, flowering times have been observed to advance with climate change, but, whether fruiting times shift as a direct consequence of shifting flowering times, or respond differently or not at all to climate change, is poorly understood. Yet, shifts in fruiting could alter species interactions, including by disrupting seed dispersal mutualisms. In the absence of long-term data on fruiting phenology, but given extensive data on flowering, we argue that an understanding of whether flowering and fruiting are tightly linked or respond independently to environmental change can significantly advance our understanding of how fruiting phenologies will respond to warming climates. Through a case study of biotically and abiotically dispersed plants, we present evidence for a potential functional link between the timing of flowering and fruiting. We then propose general mechanisms for how flowering and fruiting life history stages could be functionally linked or independently driven by external factors, and we use our case study species and phenological responses to distinguish among proposed mechanisms in a real-world framework. Finally, we identify research directions that could elucidate which of these mechanisms drive the timing between subsequent life stages. Understanding how fruiting phenology is altered by climate change is essential for all plant species but is particularly critical to sustaining the large numbers of plant species that rely on animal-mediated dispersal, as well as the animals that rely on fruit for sustenance. 
    more » « less
  4. Abstract

    Many organisms use environmental cues to time events in their annual cycle, such as reproduction and migration, with the appropriate timing of such events impacting survival and reproduction. As the climate changes, evolved mechanisms of cue use may facilitate or limit the capacity of organisms to adjust phenology accordingly, and organisms often integrate multiple cues to fine-tune the timing of annual events. Yet, our understanding of how suites of cues are integrated to generate observed patterns of seasonal timing remains nascent. We present an overarching framework to describe variation in the process of cue integration in the context of seasonal timing. This framework incorporates both cue dependency and cue interaction. We then summarize how existing empirical findings across a range of vertebrate species and life cycle events fit into this framework. Finally, we use a theoretical model to explore how variation in modes of cue integration may impact the ability of organisms to adjust phenology adaptively in the face of climate change. Such a theoretical approach can facilitate the exploration of complex scenarios that present challenges to study in vivo but capture important complexity of the natural world.

     
    more » « less
  5. Abstract

    The timing and duration of the plant growing season and its period of peak activity have shifted globally in response to climate change. These changes alter the period of maximum and potential total carbon uptake, especially in highly seasonal environments such as the Arctic. Earlier plant growth has been observed, and if plant senescence remains the same or is delayed, growing season extension will likely lead to greater carbon uptake and growth. We used phenology data from a multifactor climate change experiment to examine how altered seasonality influences the timing and rate‐of‐senescence and to compare direct observations of individual plant senescence with mathematical models of onset‐of‐senescence based on near‐surface remote sensing. Our three‐year experiment in an Arctic tundra ecosystem altered plant microclimates through factorial warming and earlier snowmelt treatments. We found that (1) early snowmelt and warmer temperatures led to earlier remotely sensed onset‐of‐senescence, but did not alter the rate‐of‐senescence, (2) the timing of color change for individual vascular plants did not change in response to the treatments, leading to a mismatch with remotely sensed phenology, and (3) cumulative, phenologically dependent microclimate metrics (e.g., soil cold degree‐days) best predicted the onset‐of‐senescence. Our study highlights the complexity of observing and understanding controls over phenological shifts that affect plant growth and consequently ecosystem functions. Experimental studies that include multiple approaches to observe and model phenological changes and microclimate are critical to develop phenological forecasting models.

     
    more » « less