Lightning induced perturbations of the lower ionosphere are investigated with very low frequency (VLF) remote sensing on a unique overlapping propagation path geometry. The signals from two VLF transmitters (at different frequencies) are observed at a single receiver after propagation through a common channel in the Earth‐ionosphere waveguide. This measurement diversity allows for greater certainty in quantification of perturbations to the ionospheric
Terrestrial Very‐Low‐Frequency (VLF) energy from both lightning discharges and radio transmitters has a role in affecting the energetic electrons in the Van Allen radiation belts, but quantification of these effects is particularly difficult, largely due to the collisional damping experienced in the highly variable electron density in the D‐ and E‐region ionosphere. The Faraday International Reference Ionosphere (FIRI) model was specifically developed by combining lower‐ionosphere chemistry modeling with in situ rocket measurements, and represents to date the most reliable source of electron density profiles for the lower ionosphere. As a full‐resolution empirical model, FIRI is not well suited to D‐ and E‐region ionosphere inversion, and its applicability in transionospheric VLF simulation and in remote sensing of the lower ionosphere is limited. Motivated by how subionospheric VLF remote sensing has been aided by the Wait and Spies (WS) profile (Wait & Spies, 1964), in this study, we parameterize the FIRI profiles and extend the WS profile to the E‐region ionosphere by introducing two new parameters: the knee altitude
- Award ID(s):
- 1952465
- PAR ID:
- 10369685
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 126
- Issue:
- 7
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract D region. Changes in amplitude and phase are modeled with the Long Wave Propagation Capability (LWPC) software package to quantify changes in reference height and steepness of the two parameterD region electron density model. Since the nighttimeD region profile prior to the perturbation is found to strongly affect the resulting quantification, and is highly variable and generally unknown at nighttime, an error minimization method for identifying the most likely ionospheric disturbance independent of the ambient profile is used. Analysis of 12 large lightning perturbations resulting from discharges with peak currents greater than 160 kA shows that the ionospheric reference height can change by 2–8 km. We investigate both early/fast events (direct ionization and heating from lightning) and lightning‐induced electron precipitation (LEP) events, induced by lightning hundreds of kilometer away. LEP events increaseD region electron density while early/fast events can lead to a increase or decrease in electron density. Multi‐point observations along a VLF propagation path are needed to further improve ionospheric perturbation quantification with VLF remote sensing. -
Abstract We demonstrate a methodology for utilizing measurements from very low frequency (VLF, 3−30 kHz) transmitters and lightning emissions to produce 3D lower electron density maps, and apply it to multiple geophysical disturbances. The D‐region lower ionosphere (60−90 km) forms the upper boundary of the Earth‐ionosphere waveguide which allows VLF radio waves to propagate to global distances. Measurements of these signals have, in many prior studies, been used to infer path‐average electron density profiles within the D region. Historically, researchers have focused on either measurements of VLF transmitters or radio atmospherics (sferics) from lightning. In this work, we build on recently published methods for each and present a method to unify the two approaches via tomography. The output of the tomographic inversion produces maps of electron density over a large portion of the United States and Gulf of Mexico. To illustrate the benefits of this unified approach, daytime and nighttime maps are compared between a sferic‐only model and the new approach suggested here. We apply the model to characterize two geophysical disturbances: solar flares and lower ionospheric changes associated with thunderstorms.
-
Abstract We present a new four‐parameter model of the
D ‐region (60–90 km) ionospheric electron density, useful in very low frequency (VLF, 3–30 kHz) remote sensing. VLF waves have a long history of use to indirectly inferD ‐region conditions, as they reflect efficiently and thus are sensitive to small changes in the electron density. Most historical efforts use VLF observations along with a forward model of theD ‐region and VLF propagation. The ionospheric assumptions in the forward model are altered until the output matches the observation. The most commonD ‐region model, known as the Wait‐Spies ionosphere, takes the electron density as exponentially increasing with altitude and specifies a height and steepness. This model was designed to capture the VLF propagation variations evident at a single frequency. The realD ‐region is likely more complex. The limited number ofD ‐region rocket passes that have previously been compiled tend to show the existence of a “ledge” somewhere between 70 and 90 km. Broadband VLF signals emitted from lightning allows a more sophisticated parametrization. Using carefully averaged amplitudes and phases of VLF sferics, we formulate a more general four‐parameterD ‐region model that includes a ledge discontinuity. Using lightning‐emitted VLF observations along with a theoretical model, we find that this model better describes the ionosphere during the daytime. During the ambient nighttime and during a solar flare the two‐parameter ionosphere may be sufficient, at least for the purposes of calculating broadband VLF propagation, since the ledge either weakens or moves outside the altitude range of VLF sensitivity. -
Abstract The lowest region of the ionosphere, the
D region, plays an important role in magnetosphere‐ionosphere coupling but is challenging to directly observe. The group velocity of the extremely low frequency (ELF; 3–300 Hz) portion of lightning induced electromagnetic radiation can be used to diagnose theD region electron density profile. Day‐night conditions can be assessed using ELF receivers and lightning detection networks. Analytical formulations and the Long Wave Propagation Capability software package show that ELF group velocity has particular sensitivity to the sharpness of the exponential electron density profile. Applying the technique to sudden ionospheric disturbances shows that the group velocity increases in response to incidence of solar X‐ray flux . A small number of ELF receivers can provide a large‐scale diagnostic of theD region. ELF remote sensing using lightning is complementary to very low frequency remote sensing and can be used to assess the Earth‐ionosphere propagation channel for very low frequency transmitters. -
Abstract We present a tomographic imaging technique for the D‐region electron density using a set of spatially distributed very low frequency (VLF) remote sensing measurements. The D‐region ionosphere plays a critical role in many long‐range and over‐the‐horizon communication systems; however, it is unreachable by most direct measurement techniques such as balloons and satellites. Fortunately, the D region, combined with Earth's surface, forms what is known as the Earth‐Ionosphere waveguide allowing VLF and low frequency (LF) radio waves to propagate to global distances. By measuring these signals, we can estimate a path measurement of the electron density, which we assume to be a path‐averaged electron density profile of the D region. In this work, we use path‐averaged inferences from lightning‐generated radio atmospherics (sferics) with a tomographic inversion to produce 3D models of electron density over the Southeastern United States and the Gulf of Mexico. The model begins with two‐dimensional great circle path observations, each of which is parameterized so it includes vertical profile information. The tomography is then solved in two dimensions (latitude and longitude) at arbitrarily many altitude slices to construct the 3D electron density. We examine the model's performance in the synthetic case and determine that we have an expected percent error better than 10% within our area of interest. We apply our model to the 2017 “Great American Solar Eclipse” and find a clear relationship between sunlight percentage and electron density at different altitudes.