skip to main content

Title: Plant carbohydrate storage: intra‐ and inter‐specific trade‐offs reveal a major life history trait

Trade‐offs among carbon sinks constrain how trees physiologically, ecologically, and evolutionarily respond to their environments. These trade‐offs typically fall along a productive growth to conservative, bet‐hedging continuum. How nonstructural carbohydrates (NSCs) stored in living tree cells (known as carbon stores) fit in this trade‐off framework is not well understood.

We examined relationships between growth and storage using both within species genetic variation from a common garden, and across species phenotypic variation from a global database.

We demonstrate that storage is actively accumulated, as part of a conservative, bet‐hedging life history strategy. Storage accumulates at the expense of growth both within and across species. Within the speciesPopulus trichocarpa, genetic trade‐offs show that for each additional unit of wood area growth (in cm2 yr−1) that genotypes invest in, they lose 1.2 to 1.7 units (mg g−1NSC) of storage. Across species, for each additional unit of area growth (in cm2 yr−1), trees, on average, reduce their storage by 9.5% in stems and 10.4% in roots.

Our findings impact our understanding of basic plant biology, fit storage into a widely used growth‐survival trade‐off spectrum describing life history strategy, and challenges the assumptions of passive storage made in ecosystem models today.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
New Phytologist
Page Range / eLocation ID:
p. 2211-2222
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Both tree size and life history variation drive forest structure and dynamics, but little is known about how life history frequency changes with size. We used a scaling framework to quantify ontogenetic size variation and assessed patterns of abundance, richness, productivity and light interception across life history strategies from >114,000 trees in a primary, neotropical forest. We classified trees along two life history axes: afast–slowaxis characterized by a growth–survival trade‐off, and astature–recruitmentaxis with tall,long‐lived pioneersat one end and short,short‐lived recruitersat the other.

    Relative abundance, richness, productivity and light interception follow an approximate power law, systematically shifting over an order of magnitude with tree size.Slowsaplings dominate the understorey, butslowtrees decline to parity with rapidly growingfastandlong‐lived pioneerspecies in the canopy.

    Like the community as a whole,slowspecies are the closest to obeying the energy equivalence rule (EER)—with equal productivity per size class—but other life histories strongly increase productivity with tree size. Productivity is fuelled by resources, and the scaling of light interception corresponds to the scaling of productivity across life history strategies, withslowandallspecies near solar energy equivalence. This points towards a resource‐use corollary to the EER: the resource equivalence rule.

    Fitness trade‐offs associated with tree size and life history may promote coexistence in tropical forests by limiting niche overlap and reducing fitness differences.

    Synthesis. Tree life history strategies describe the different ways trees grow, survive and recruit in the understorey. We show that the proportion of trees with a pioneer life history strategy increases steadily with tree size, as pioneers become relatively more abundant, productive, diverse and capture more resources towards the canopy. Fitness trade‐offs associated with size and life history strategy offer a mechanism for coexistence in tropical forests.

    more » « less
  2. Abstract

    Organisms of all species must balance their allocation to growth, survival and recruitment. Among tree species, evolution has resulted in different life‐history strategies for partitioning resources to these key demographic processes. Life‐history strategies in tropical forests have often been shown to align along a trade‐off between fast growth and high survival, that is, the well‐known fast–slow continuum. In addition, an orthogonal trade‐off has been proposed between tall stature—resulting from fast growth and high survival—and recruitment success, that is, a stature−recruitment trade‐off. However, it is not clear whether these two independent dimensions of life‐history variation structure tropical forests worldwide.

    We used data from 13 large‐scale and long‐term tropical forest monitoring plots in three continents to explore the principal trade‐offs in annual growth, survival and recruitment as well as tree stature. These forests included relatively undisturbed forests as well as typhoon‐disturbed forests. Life‐history variation in 12 forests was structured by two orthogonal trade‐offs, the growth−survival trade‐off and the stature−recruitment trade‐off. Pairwise Procrustes analysis revealed a high similarity of demographic relationships among forests. The small deviations were related to differences between African and Asian plots.

    Synthesis. The fast–slow continuum and tree stature are two independent dimensions structuring many, but not all tropical tree communities. Our discovery of the consistency of demographic trade‐offs and life‐history strategies across different forest types from three continents substantially improves our ability to predict tropical forest dynamics worldwide.

    more » « less
  3. Abstract

    Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.

    Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.

    Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.

    We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.

    Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.

    Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.

    Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance.

    more » « less
  4. Summary

    Distinct survival strategies can result from trade‐offs in plant function under contrasting environments. Investment in drought resistance mechanisms can enhance survivorship but result in conservative growth. We tested the hypothesis that the widespread oaks (Quercusspp.) of the Americas exhibit an interspecific trade‐off between drought resistance and growth capacity.

    Using experimental water treatments, we isolated adaptive trait associations among species in relation to their broad climates of origin and tested for correlated evolution between plant functional responses to water availability and habitat.

    Across all lineages, oaks displayed plastic drought responses – typically acclimating through osmolyte accumulation in leaves and/or employing conservative growth. Oaks from xeric climates had higher osmolytes and reduced stomatal pore area index, which allows for moderated gas exchange and limits tissue loss.

    Patterns suggest drought resistance strategies are convergent and under strong adaptive pressure. Leaf habit, however, mediates the growth and drought resistance strategies of oaks. Deciduous species, and evergreen species from xeric climates, have increased drought tolerance through osmoregulation, which allows for continuous, conservative growth. Evergreen mesic species show limited drought resistance but could enhance growth under well‐watered conditions. Consequently, evergreen species from mesic environments are especially vulnerable to chronic drought and climate change.

    more » « less
  5. Abstract

    A paradigm in the plant defence literature is that defending against herbivores comes at a cost to growth, resulting in a growth–defence trade‐off. However, while there is strong evidence for growth–defence trade‐offs across species, evidence is mixed within species.

    Several mechanisms can account for this equivocal support within species, but teasing them apart requires examining growth–defence relationships both within and among populations, an approach seldom employed.

    We examined correlations between plant biomass (growth) and terpene production (defence) within and among populations ofMonarda fistulosa, a perennial herb. We sampled populations from Montana and Wisconsin, regions that differ in resource availability characterized by different summer precipitation and associated abiotic conditions that influence plant productivity.

    We found negative, neutral and positive growth–defence correlations, depending on the scale examined. Negative correlations occurred across populations originating from divergent regions, positive correlations occurred across populations originating from within the high‐resource region and neutral correlations were found within single populations.

    Collectively, these results challenge the general expectation of ubiquitous trade‐offs and support emerging views that resource availability (as it affects productivity) shapes the evolution of defence at different scales.

    A freePlain Language Summarycan be found within the Supporting Information of this article.

    more » « less