We present the characteristics of 2 mm selected sources from the largest Atacama Large Millimeter/submillimeter Array (ALMA) blank-field contiguous survey conducted to date, the Mapping Obscuration to Reionization with ALMA (MORA) survey covering 184 arcmin2at 2 mm. Twelve of 13 detections above 5
We present the discovery of the first millimeter afterglow of a short-duration
- Publication Date:
- NSF-PAR ID:
- 10369699
- Journal Name:
- The Astrophysical Journal Letters
- Volume:
- 935
- Issue:
- 1
- Page Range or eLocation-ID:
- Article No. L11
- ISSN:
- 2041-8205
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract σ are attributed to emission from galaxies, 11 of which are dominated by cold dust emission. These sources have a median redshift of primarily based on optical/near-infrared photometric redshifts with some spectroscopic redshifts, with 77% ± 11% of sources atz > 3 and 38% ± 12% of sources atz > 4. This implies that 2 mm selection is an efficient method for identifying the highest-redshift dusty star-forming galaxies (DSFGs). Lower-redshift DSFGs (z < 3) are far more numerous than those atz > 3 yet are likely to drop out at 2 mm. MORA shows that DSFGs with star formation rates in excess of 300M ⊙yr−1and a relative rarity of ∼10−5Mpc−3contribute ∼30% to the integrated star formation rate density at 3 <z < 6. The volume density of 2 mm selected DSFGs is consistent with predictions from some cosmological simulations and is similar to the volume density of their hypothesized descendants: massive, quiescent galaxies atz > 2. Analysis of MORA sources’more » -
ALMA Reveals Extended Cool Gas and Hot Ionized Outflows in a Typical Star-forming Galaxy at Z = 7.13
Abstract We present spatially resolved morphological properties of [C
II ] 158μ m, [OIII ] 88μ m, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz = 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII ] line and UV continuum are compact, the [CII ] line is extended up to a radius ofr ∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μ m, we find an average dust temperature and emissivity index of K and , respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1M ⊙yr−1with an obscured fraction of 87%. While the [OIII ] line is a good tracer of the SFR, the [CII ] line shows deviation from the localL [CII ]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII ] and [OIII ], with significant residuals (∼5σ ) in the [OIII ] line spectrum after subtracting a single Gaussian model. This suggestsmore » -
Abstract We measure the molecular-to-atomic gas ratio,
R mol, and the star formation rate (SFR) per unit molecular gas mass, SFEmol, in 38 nearby galaxies selected from the Virgo Environment Traced in CO (VERTICO) survey. We stack ALMA12CO (J = 2−1) spectra coherently using Hi velocities from the VIVA survey to detect faint CO emission out to galactocentric radiir gal∼ 1.2r 25. We determine the scale lengths for the molecular and stellar components, finding a ∼3:5 relation compared to ∼1:1 in field galaxies, indicating that the CO emission is more centrally concentrated than the stars. We computeR molas a function of different physical quantities. While the spatially resolvedR molon average decreases with increasing radius, we find that the mean molecular-to-atomic gas ratio within the stellar effective radiusR e ,R mol(r <R e ), shows a systematic increase with the level of Hi , truncation and/or asymmetry (HIperturbation). Analysis of the molecular- and the atomic-to-stellar mass ratios withinR e , and , shows that VERTICO galaxies have increasingly lower for larger levels of HIperturbation (compared to field galaxies matched in stellar mass), but no significant change in . We also measure a clear systematic decrease of the SFEmolwithinR e , SFEmol(r <Re ),more » -
A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface (
) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR), and a higher electronic ASR ( ) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. The thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations of Constant current electrolysis, however, is not suitable for an unstable oxygen electrode because can reach a very high value with a gradually increased A crack may only occur under certain conditions when -
Abstract We present a chemodynamical study of the Grus I ultra-faint dwarf galaxy (UFD) from medium-resolution (
R ∼ 11,000) Magellan/IMACS spectra of its individual member stars. We identify eight confirmed members of Grus I, based on their low metallicities and coherent radial velocities, and four candidate members for which only velocities are derived. In contrast to previous work, we find that Grus I has a very low mean metallicity of 〈[Fe/H]〉 = −2.62 ± 0.11 dex, making it one of the most metal-poor UFDs. Grus I has a systemic radial velocity of −143.5 ± 1.2 km s−1and a velocity dispersion of km s−1, which results in a dynamical mass ofM ⊙and a mass-to-light ratio ofM/L V =M ⊙/L ⊙. Under the assumption of dynamical equilibrium, our analysis confirms that Grus I is a dark-matter-dominated UFD (M/L > 80M ⊙/L ⊙). However, we do not resolve a metallicity dispersion (σ [Fe/H]< 0.44 dex). Our results indicate that Grus I is a fairly typical UFD with parameters that agree with mass–metallicity and metallicity-luminosity trends for faint galaxies. This agreement suggests that Grus I has not lost an especially significant amount of mass from tidal encounters with the Milky Way, in linemore »