skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The First Short GRB Millimeter Afterglow: The Wide-angled Jet of the Extremely Energetic SGRB 211106A
Abstract We present the discovery of the first millimeter afterglow of a short-durationγ-ray burst (SGRB) and the first confirmed afterglow of an SGRB localized by the GUANO system on Swift. Our Atacama Large Millimeter/Sub-millimeter Array (ALMA) detection of SGRB 211106A establishes an origin in a faint host galaxy detected in Hubble Space Telescope imaging at 0.7 ≲z≲ 1.4. From the lack of a detectable optical afterglow, coupled with the bright millimeter counterpart, we infer a high extinction,AV≳ 2.6 mag along the line of sight, making this one of the most highly dust-extincted SGRBs known to date. The millimeter-band light curve captures the passage of the synchrotron peak from the afterglow forward shock and reveals a jet break at t jet = 29.2 4.0 + 4.5 days. For a presumed redshift ofz= 1, we infer an opening angle,θjet= (15.°5 ± 1.°4), and beaming-corrected kinetic energy of log ( E K / erg ) = 51.8 ± 0.3 , making this one of the widest and most energetic SGRB jets known to date. Combining all published millimeter-band upper limits in conjunction with the energetics for a large sample of SGRBs, we find that energetic outflows in high-density environments are more likely to have detectable millimeter counterparts. Concerted afterglow searches with ALMA should yield detection fractions of 24%–40% on timescales of ≳2 days at rates of ≈0.8–1.6 per year, outpacing the historical discovery rate of SGRB centimeter-band afterglows.  more » « less
Award ID(s):
2047919 2224255 2221789 1944985 1909796 1814782
PAR ID:
10369699
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal Letters
Volume:
935
Issue:
1
ISSN:
2041-8205
Format(s):
Medium: X Size: Article No. L11
Size(s):
Article No. L11
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract A steady-state, semi-analytical model of energetic particle acceleration in radio-jet shear flows due to cosmic-ray viscosity obtained by Webb et al. is generalized to take into account more general cosmic-ray boundary spectra. This involves solving a mixed Dirichlet–Von Neumann boundary value problem at the edge of the jet. The energetic particle distribution functionf0(r,p) at cylindrical radiusrfrom the jet axis (assumed to lie along thez-axis) is given by convolving the particle momentum spectrum f 0 ( , p ) with the Green’s function G ( r , p ; p ) , which describes the monoenergetic spectrum solution in which f 0 δ ( p p ) asr→ ∞ . Previous work by Webb et al. studied only the Green’s function solution for G ( r , p ; p ) . In this paper, we explore for the first time, solutions for more general and realistic forms for f 0 ( , p ) . The flow velocityu=u(r)ezis along the axis of the jet (thez-axis).uis independent ofz, andu(r) is a monotonic decreasing function ofr. The scattering time τ ( r , p ) = τ 0 ( p / p 0 ) α in the shear flow region 0 <r<r2, and τ ( r , p ) = τ 0 ( p / p 0 ) α ( r / r 2 ) s , wheres> 0 in the regionr>r2is outside the jet. Other original aspects of the analysis are (i) the use of cosmic ray flow lines in (r,p) space to clarify the particle spatial transport and momentum changes and (ii) the determination of the probability distribution ψ p ( r , p ; p ) that particles observed at (r,p) originated fromr→ ∞ with momentum p . The acceleration of ultrahigh-energy cosmic rays in active galactic nuclei jet sources is discussed. Leaky box models for electron acceleration are described. 
    more » « less
  2. A theoretical analysis on crack formation and propagation was performed based on the coupling between the electrochemical process, classical elasticity, and fracture mechanics. The chemical potential of oxygen, thus oxygen partial pressure, at the oxygen electrode-electrolyte interface ( μ O 2 OE∣El ) was investigated as a function of transport properties, electrolyte thickness and operating conditions (e.g., steam concentration, constant current, and constant voltage). Our analysis shows that: a lower ionic area specific resistance (ASR), r i O E , and a higher electronic ASR ( r e O E ) of the oxygen electrode/electrolyte interface are in favor of suppressing crack formation. The μ O 2 O E E l , thus local pO2, are sensitive towards the operating parameters under galvanostatic or potentiostatic electrolysis. Constant current density electrolysis provides better robustness, especially at a high current density with a high steam content. While constant voltage electrolysis leads to greater variations of μ O 2 O E E l . Constant current electrolysis, however, is not suitable for an unstable oxygen electrode because μ O 2 O E E l can reach a very high value with a gradually increased r i O E . A crack may only occur under certain conditions when p O 2 T P B > p c r .  
    more » « less
  3. Abstract We measure the CO-to-H2conversion factor (αCO) in 37 galaxies at 2 kpc resolution, using the dust surface density inferred from far-infrared emission as a tracer of the gas surface density and assuming a constant dust-to-metal ratio. In total, we have ∼790 and ∼610 independent measurements ofαCOfor CO (2–1) and (1–0), respectively. The mean values forαCO (2–1)andαCO (1–0)are 9.3 5.4 + 4.6 and 4.2 2.0 + 1.9 M pc 2 ( K km s 1 ) 1 , respectively. The CO-intensity-weighted mean is 5.69 forαCO (2–1)and 3.33 forαCO (1–0). We examine howαCOscales with several physical quantities, e.g., the star formation rate (SFR), stellar mass, and dust-mass-weighted average interstellar radiation field strength ( U ¯ ). Among them, U ¯ , ΣSFR, and the integrated CO intensity (WCO) have the strongest anticorrelation with spatially resolvedαCO. We provide linear regression results toαCOfor all quantities tested. At galaxy-integrated scales, we observe significant correlations betweenαCOandWCO, metallicity, U ¯ , and ΣSFR. We also find thatαCOin each galaxy decreases with the stellar mass surface density (Σ) in high-surface-density regions (Σ≥ 100Mpc−2), following the power-law relations α CO ( 2 1 ) Σ 0.5 and α CO ( 1 0 ) Σ 0.2 . The power-law index is insensitive to the assumed dust-to-metal ratio. We interpret the decrease inαCOwith increasing Σas a result of higher velocity dispersion compared to isolated, self-gravitating clouds due to the additional gravitational force from stellar sources, which leads to the reduction inαCO. The decrease inαCOat high Σis important for accurately assessing molecular gas content and star formation efficiency in the centers of galaxies, which bridge “Milky Way–like” to “starburst-like” conversion factors. 
    more » « less
  4. Abstract We study the linear stability of a planar interface separating two fluids in relative motion, focusing on conditions appropriate for the boundaries of relativistic jets. The jet is magnetically dominated, whereas the ambient wind is gas-pressure-dominated. We derive the most general form of the dispersion relation and provide an analytical approximation of its solution for an ambient sound speed much smaller than the jet Alfvén speedvA, as appropriate for realistic systems. The stability properties are chiefly determined by the angleψbetween the wavevector and the jet magnetic field. Forψ=π/2, magnetic tension plays no role, and our solution resembles the one of a gas-pressure-dominated jet. Here, only sub-Alfvénic jets are unstable ( 0 < M e ( v / v A ) cos θ < 1 , wherevis the shear velocity andθthe angle between the velocity and the wavevector). Forψ= 0, the free energy in the velocity shear needs to overcome the magnetic tension, and only super-Alfvénic jets are unstable ( 1 < M e < ( 1 + Γ w 2 ) / [ 1 + ( v A / c ) 2 Γ w 2 ] , with Γwthe wind adiabatic index). Our results have important implications for the propagation and emission of relativistic magnetized jets. 
    more » « less
  5. Abstract We present13CO(J= 1 → 0) observations for the EDGE-CALIFA survey, which is a mapping survey of 126 nearby galaxies at a typical spatial resolution of 1.5 kpc. Using detected12CO emission as a prior, we detect13CO in 41 galaxies via integrated line flux over the entire galaxy and in 30 galaxies via integrated line intensity in resolved synthesized beams. Incorporating our CO observations and optical IFU spectroscopy, we perform a systematic comparison between the line ratio 12 / 13 I [ 12 CO ( J = 1 0 ) ] / I [ 13 CO ( J = 1 0 ) ] and the properties of the stars and ionized gas. Higher 12 / 13 values are found in interacting galaxies compared to those in noninteracting galaxies. The global 12 / 13 slightly increases with infrared colorF60/F100but appears insensitive to other host-galaxy properties such as morphology, stellar mass, or galaxy size. We also present azimuthally averaged 12 / 13 profiles for our sample up to a galactocentric radius of 0.4r25(∼6 kpc), taking into account the13CO nondetections by spectral stacking. The radial profiles of 12 / 13 are quite flat across our sample. Within galactocentric distances of 0.2r25, the azimuthally averaged 12 / 13 increases with the star formation rate. However, Spearman rank correlation tests show the azimuthally averaged 12 / 13 does not strongly correlate with any other gas or stellar properties in general, especially beyond 0.2r25from the galaxy centers. Our findings suggest that in the complex environments in galaxy disks, 12 / 13 is not a sensitive tracer for ISM properties. Dynamical disturbances, like galaxy interactions or the presence of a bar, also have an overall impact on 12 / 13 , which further complicates the interpretations of 12 / 13 variations. 
    more » « less