skip to main content


Title: Companion mass limits for 17 binary systems obtained with binary differential imaging and MagAO/Clio
ABSTRACT

Improving direct detection capability close to the star through improved star subtraction and post-processing techniques is vital for discovering new low-mass companions and characterizing known ones at longer wavelengths. We present results of 17 binary star systems observed with the Magellan adaptive optics system (MagAO) and the Clio infrared camera on the Magellan Clay Telescope using binary differential imaging (BDI). BDI is an application of reference differential imaging (RDI) and angular differential imaging (ADI) applied to wide binary star systems (2 arcsec <Δρ < 10 arcsec) within the isoplanatic patch in the infrared. Each star serves as the point spread function (PSF) reference for the other, and we performed PSF estimation and subtraction using principal component analysis. We report contrast and mass limits for the 35 stars in our initial survey using BDI with MagAO/Clio in L′ and 3.95 µm bands. Our achieved contrasts varied between systems, and spanned a range of contrasts from 3.0 to 7.5 magnitudes and a range of separations from 0.2 to 2 arcsec. Stars in our survey span a range of masses, and our achieved contrasts correspond to late-type M-dwarf masses down to ∼10 MJup. We also report detection of a candidate companion signal at 0.2 arcsec (18 au) around HIP 67506 A (SpT G5V, mass ∼1.2 M⊙), which we estimate to be $\sim 60-90 \, \rm{M_{Jup}}$. We found that the effectiveness of BDI is highest for approximately equal brightness binaries in high-Strehl conditions.

 
more » « less
NSF-PAR ID:
10369715
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
3
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4487-4504
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    We report the confirmation of HIP 67506 C, a new stellar companion to HIP 67506 A. We previously reported a candidate signal at 2λ/D (240 mas) in L′ in MagAO/Clio imaging using the binary differential imaging technique. Several additional indirect signals showed that the candidate signal merited follow-up: significant astrometric acceleration in Gaia DR3, Hipparcos–Gaia proper motion anomaly, and overluminosity compared to single main-sequence stars. We confirmed the companion, HIP 67506 C, at 0.1 arcsec with MagAO-X in 2022 April. We characterized HIP 67506 C MagAO-X photometry and astrometry, and estimated spectral-type K7-M2; we also re-evaluated HIP 67506 A in light of the close companion. Additionally, we show that a previously identified 9 arcsec companion, HIP 67506 B, is a much further distant unassociated background star. We also discuss the utility of indirect signposts in identifying small inner working angle candidate companions.

     
    more » « less
  2. Abstract

    We use observations with the infrared-optimized Magellan Adaptive Optics (MagAO) system and Clio camera in 3.9μm light to place stringent mass constraints on possible undetected companions to Sirius A. We suppress the light from Sirius A by imaging it through a grating vector-apodizing phase plate coronagraph with a 180° dark region (gvAPP-180). To remove residual starlight in postprocessing, we apply a time-domain principal-components-analysis-based algorithm we call PCA-Temporal, which uses eigen time series rather than eigenimages to subtract starlight. By casting the problem in terms of eigen time series, we reduce the computational cost of postprocessing the data, enabling the use of the fully sampled data set for improved contrast at small separations. We also discuss the impact of retaining fine temporal sampling of the data on final contrast limits. We achieve postprocessed contrast limits of 1.5 × 10−6–9.8 × 10−6outside of 0.″75, which correspond to planet masses of 2.6–8.0MJ. These are combined with values from the recent literature of high-contrast imaging observations of Sirius to synthesize an overall completeness fraction as a function of mass and separation. After synthesizing these recent studies and our results, the final completeness analysis rules out 99% of ≥9MJplanets from 2.5 to 7 au.

     
    more » « less
  3. Abstract

    Stellar mass is a fundamental parameter that is key to our understanding of stellar formation and evolution, as well as the characterization of nearby exoplanet companions. Historically, stellar masses have been derived from long-term observations of visual or spectroscopic binary star systems. While advances in high-resolution imaging have enabled observations of systems with shorter orbital periods, measurements of stellar masses remain challenging, and relatively few have been precisely measured. We present a new statistical approach to measuring masses for populations of stars. Using Gaia astrometry, we analyze the relative orbital motion of >3800 wide binary systems comprising low-mass stars to establish a mass–magnitude relation in the GaiaGRPband spanning the absolute magnitude range 14.5 >MGRP> 4.0, corresponding to a mass range of 0.08MM≲ 1.0M. This relation is directly applicable to >30 million stars in the Gaia catalog. Based on comparison to existing mass–magnitude relations calibrated forKsmagnitudes from the Two Micron All Sky Survey, we estimate that the internal precision of our mass estimates is ∼10%. We use this relation to estimate masses for a volume-limited sample of ∼18,200 stars within 50 pc of the Sun and the present-day field mass function for stars withM≲ 1.0M, which we find peaks at 0.16M. We investigate a volume-limited sample of wide binary systems with early-K dwarf primaries, complete for binary mass ratiosq> 0.2, and measure the distribution ofqat separations >100 au. We find that our distribution ofqis not uniform, rather decreasing towardq= 1.0.

     
    more » « less
  4. ABSTRACT

    SKA-MID surveys will be the first in the radio domain to achieve clearly sub-arcsecond resolution at high sensitivity over large areas, opening new science applications for galaxy evolution. To investigate the potential of these surveys, we create simulated SKA-MID images of a ∼0.04 deg2 region of GOODS-North, constructed using multi-band HST imaging of 1723 real galaxies containing significant substructure at 0 < z < 2.5. We create images at the proposed depths of the band 2 wide, deep, and ultradeep reference surveys (RMS = 1.0, 0.2, and 0.05 μJy over 1000, 10–30, and 1 deg2, respectively), using the telescope response of SKA-MID at 0.6 arcsec resolution. We quantify the star formation rate – stellar mass space the surveys will probe, and asses to which stellar masses the surveys will be complete. We measure galaxy flux density, half-light radius (R50), concentration, Gini (distribution of flux), second-order moment of the brightest pixels (M20), and asymmetry before and after simulation with the SKA response, to perform input-output tests as a function of depth, separating the effects of convolution and noise. We find that the recovery of Gini and asymmetry is more dependent on survey depth than for R50, concentration and M20. We also assess the relative ranking of parameters before and after observation with SKA-MID. R50 best retains its ranking, while asymmetries are poorly recovered. We confirm that the wide tier will be suited to the study of highly star-forming galaxies across different environments, whilst the ultradeep tier will enable detailed morphological analysis to lower SFRs.

     
    more » « less
  5. ABSTRACT

    Based on high-contrast images obtained with the Gemini Planet Imager (GPI), we report the discovery of two point-like sources at angular separations ρ ∼ 0.18 and 0.80 arcsec from the stars HD 29992 and HD 196385. A combined analysis of the new GPI observations and images from the literature indicates that the source close to HD 29992 could be a companion to the star. Concerning HD 196385, the small number of contaminants (∼0.5) suggests that the detected source may be gravitationally bound to the star. For both systems, we discarded the presence of other potential companions with m > 75 MJup at ρ ∼ 0.3–1.3 arcsec. From stellar model atmospheres and low-resolution GPI spectra, we derive masses of ∼0.2–0.3 M⊙ for these sources. Using a Markov-chain Monte Carlo approach, we performed a joint fit of the new astrometry measurements and published radial velocity data to characterize the possible orbits. For HD 196385B, the median dynamic mass is in agreement with that derived from model atmospheres, whilst for HD 29992B the orbital fit favours masses close to the brown dwarf regime (∼0.08 M⊙). HD 29992 and HD 196385 might be two new binary systems with M-type stellar companions. However, new high angular resolution images would help to confirm definitively whether the detected sources are gravitationally bound to their respective stars, and permit tighter constraints on the orbital parameters of both systems.

     
    more » « less