skip to main content


Title: PDS5A and PDS5B differentially affect gene expression without altering cohesin localization across the genome
Abstract Background

Cohesin is an important structural regulator of the genome, regulating both three-dimensional genome organization and gene expression. The core cohesin trimer interacts with various HEAT repeat accessory subunits, yielding cohesin complexes of distinct compositions and potentially distinct functions. The roles of the two mutually exclusive HEAT repeat subunits PDS5A and PDS5B are not well understood.

Results

Here, we determine that PDS5A and PDS5B have highly similar localization patterns across the mouse embryonic stem cell (mESC) genome and they show a strong overlap with other cohesin HEAT repeat accessory subunits, STAG1 and STAG2. Using CRISPR/Cas9 genome editing to generate individual stable knockout lines for PDS5A and PDS5B, we find that loss of one PDS5 subunit does not alter the distribution of the other PDS5 subunit, nor the core cohesin complex. Both PDS5A and PDS5B are required for proper gene expression, yet they display only partially overlapping effects on gene targets. Remarkably, gene expression following dual depletion of the PDS5 HEAT repeat proteins does not completely overlap the gene expression changes caused by dual depletion of the STAG HEAT repeat proteins, despite the overlapping genomic distribution of all four proteins. Furthermore, dual loss of PDS5A and PDS5B decreases cohesin association with NIPBL and WAPL, reduces SMC3 acetylation, and does not alter overall levels of cohesin on the genome.

Conclusions

This work reveals the importance of PDS5A and PDS5B for proper cohesin function. Loss of either subunit has little effect on cohesin localization across the genome yet PDS5A and PDS5B are differentially required for gene expression.

 
more » « less
NSF-PAR ID:
10369720
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Epigenetics & Chromatin
Volume:
15
Issue:
1
ISSN:
1756-8935
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    B-type lamins are critical nuclear envelope proteins that interact with the three-dimensional genomic architecture. However, identifying the direct roles of B-lamins on dynamic genome organization has been challenging as their joint depletion severely impacts cell viability. To overcome this, we engineered mammalian cells to rapidly and completely degrade endogenous B-type lamins using Auxin-inducible degron technology.

    Results

    Using live-cell Dual Partial Wave Spectroscopic (Dual-PWS) microscopy, Stochastic Optical Reconstruction Microscopy (STORM), in situ Hi-C, CRISPR-Sirius, and fluorescence in situ hybridization (FISH), we demonstrate that lamin B1 and lamin B2 are critical structural components of the nuclear periphery that create a repressive compartment for peripheral-associated genes. Lamin B1 and lamin B2 depletion minimally alters higher-order chromatin folding but disrupts cell morphology, significantly increases chromatin mobility, redistributes both constitutive and facultative heterochromatin, and induces differential gene expression both within and near lamin-associated domain (LAD) boundaries. Critically, we demonstrate that chromatin territories expand as upregulated genes within LADs radially shift inwards. Our results indicate that the mechanism of action of B-type lamins comes from their role in constraining chromatin motion and spatial positioning of gene-specific loci, heterochromatin, and chromatin domains.

    Conclusions

    Our findings suggest that, while B-type lamin degradation does not significantly change genome topology, it has major implications for three-dimensional chromatin conformation at the single-cell level both at the lamina-associated periphery and the non-LAD-associated nuclear interior with concomitant genome-wide transcriptional changes. This raises intriguing questions about the individual and overlapping roles of lamin B1 and lamin B2 in cellular function and disease.

     
    more » « less
  2. Abstract Background

    Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogenCladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss ofAvrgenes is often reported as a means of overcoming recognition by cognate tomatoCfresistance genes. A recent near-complete reference genome assembly ofC. fulvumisolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes.

    Results

    Here, we obtained near-complete genome assemblies of four additionalC. fulvumisolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genesAvr4E,Avr5, andAvr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome ofC. fulvum.

    Conclusions

    Our results reveal new evolutionary aspects of theC. fulvumgenome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.

     
    more » « less
  3. Key points

    Association of plasma membrane BKCachannels with BK‐β subunits shapes their biophysical properties and physiological roles; however, functional modulation of the mitochondrial BKCachannel (mitoBKCa) by BK‐β subunits is not established.

    MitoBKCa‐α and the regulatory BK‐β1 subunit associate in mouse cardiac mitochondria.

    A large fraction of mitoBKCadisplay properties similar to that of plasma membrane BKCawhen associated with BK‐β1 (left‐shifted voltage dependence of activation,V1/2 = −55 mV, 12 µmmatrix Ca2+).

    In BK‐β1 knockout mice, cardiac mitoBKCadisplayed a lowPoand a depolarizedV1/2of activation (+47 mV at 12 µmmatrix Ca2+)

    Co‐expression of BKCawith the BK‐β1 subunit in HeLa cells doubled the density of BKCain mitochondria.

    The present study supports the view that the cardiac mitoBKCachannel is functionally modulated by the BK‐β1 subunit; proper targeting and activation of mitoBKCashapes mitochondrial Ca2+handling.

    Abstract

    Association of the plasma membrane BKCachannel with auxiliary BK‐β1–4 subunits profoundly affects the regulatory mechanisms and physiological processes in which this channel participates. However, functional association of mitochondrial BK (mitoBKCa) with regulatory subunits is unknown. We report that mitoBKCafunctionally associates with its regulatory subunit BK‐β1 in adult rodent cardiomyocytes. Cardiac mitoBKCais a calcium‐ and voltage‐activated channel that is sensitive to paxilline with a large conductance for K+of 300 pS. Additionally, mitoBKCadisplays a high open probability (Po) and voltage half‐activation (V1/2 = −55 mV,n = 7) resembling that of plasma membrane BKCawhen associated with its regulatory BK‐β1 subunit. Immunochemistry assays demonstrated an interaction between mitochondrial BKCa‐α and its BK‐β1 subunit. Mitochondria from the BK‐β1 knockout (KO) mice showed sparse mitoBKCacurrents (five patches with mitoBKCaactivity out of 28 total patches fromn = 5 different hearts), displaying a depolarizedV1/2of activation (+47 mV in 12 µmmatrix Ca2+). The reduced activity of mitoBKCawas accompanied by a high expression of BKCatranscript in the BK‐β1 KO, suggesting a lower abundance of mitoBKCachannels in this genotype. Accordingly, BK‐β1subunit increased the localization of BKDEC (i.e. the splice variant of BKCathat specifically targets mitochondria) into mitochondria by two‐fold. Importantly, both paxilline‐treated and BK‐β1 KO mitochondria displayed a more rapid Ca2+overload, featuring an early opening of the mitochondrial transition pore. We provide strong evidence that mitoBKCaassociates with its regulatory BK‐β1 subunit in cardiac mitochondria, ensuring proper targeting and activation of the mitoBKCachannel that helps to maintain mitochondrial Ca2+homeostasis.

     
    more » « less
  4. Abstract

    Chaperonin-containing TCP-1 (CCT or TRiC) is a multi-subunit complex that folds many of the proteins essential for cancer development. CCT is expressed in diverse cancers and could be an ideal therapeutic target if not for the fact that the complex is encoded by eight distinct genes, complicating the development of inhibitors. Few definitive studies addressed the role of specific subunits in promoting the chaperonin’s function in cancer. To this end, we investigated the activity of CCT2 (CCTβ) by overexpressing or depleting the subunit in breast epithelial and breast cancer cells. We found that increasing total CCT2 in cells by 1.3-1.8-fold using a lentiviral system, also caused CCT3, CCT4, and CCT5 levels to increase. Likewise, silencingcct2gene expression by ~50% caused other CCT subunits to decrease. Cells expressing CCT2 were more invasive and had a higher proliferative index. CCT2 depletion in a syngeneic murine model of triple negative breast cancer (TNBC) prevented tumor growth. These results indicate that the CCT2 subunit is integral to the activity of the chaperonin and is needed for tumorigenesis. Hence CCT2 could be a viable target for therapeutic development in breast and other cancers.

     
    more » « less
  5. Abstract

    Iron‐sulfur clusters are required in a variety of biological processes. Biogenesis of iron‐sulfur clusters includes assembly of iron‐sulfur clusters on scaffold complexes and transfer of iron‐sulfur clusters to recipient apoproteins by iron‐sulfur carriers, such as nitrogen‐fixation‐subunit‐U (NFU)‐type proteins.Arabidopsis thalianahas three plastid‐targeted NFUs: NFU1, NFU2, and NFU3. We previously discovered thatnfu2−/−nfu3−/−mutants are embryo lethal. The lack of viablenfu2−/−nfu3−/−mutants posed a serious challenge. To overcome this problem, we characterizednfu2‐1−/−nfu3‐2+/‐andnfu2‐1+/‐nfu3‐2−/−sesquimutants. Simultaneous loss‐of‐function mutations inNFU2andNFU3have an additive effect on the declines of 4Fe‐4S‐containing PSI core subunits. Consequently, the sesquimutants had much lower PSI and PSII activities, much less chlorophyll, and much smaller plant sizes, thannfu2‐1andnfu3‐2single mutants. These observations are consistent with proposed roles of NFU3 and NFU2 in the biogenesis of chloroplastic 4Fe‐4S. By performing spectroscopic and in vitro reconstitution experiments, we found that NFU1 may act as a carrier for chloroplastic 4Fe‐4S and 3Fe‐4S clusters. In line with this hypothesis, loss‐of‐function mutations inNFU1resulted in significant declines in 4Fe‐4S‐ and 3Fe‐4S‐containing chloroplastic proteins. The declines of PSI activity and 4Fe‐4S‐containing PSI core subunits innfu1mutants indicate that PSI is the main target of NFU1 action. The reductions in 4Fe‐4S‐containing PSI core proteins and PSI activity innfu3‐2,nfu2‐1, andnfu1single mutants suggest that all three plastid‐targeted NFU proteins contribute to the biogenesis of chloroplastic 4Fe‐4S clusters. Although different insertion sites of T‐DNA lines may cause variations in phenotypic results, mutation severity could be an indicator of the relative importance of the gene product. Our results are consistent with the hypothesis that NFU3 contributes more than NFU2 and NFU2 contributes more than NFU1 to the production of 4Fe‐4S‐containing PSI core subunits.

     
    more » « less