Neural networks have been widely used for advanced tasks from image recognition to natural language processing. Many recent works focus on improving the efficiency of executing neural networks in diverse applications. Researchers have advocated processing‐in‐memory (PIM) architecture as a promising candidate for training and testing neural networks because PIM design can reduce the communication cost between storage and computing units. However, there exist noises in the PIM system generated from the intrinsic physical properties of both memory devices and the peripheral circuits. The noises introduce challenges in stably training the systems and achieving high test performance, e.g., accuracy in classification tasks. This review discusses the current approaches to tolerating noise effects for both training and inference in PIM systems and provides an analysis from a hardware–software codesign perspective. Noise‐tolerant strategies for PIM systems based on resistive random‐access memory (ReRAM), including circuit‐level, algorithm‐level, and system‐level solutions are explained. In addition, we also present some selected noise‐tolerate cases in PIM systems for generative adversarial networks and physical neural networks.
- Publication Date:
- NSF-PAR ID:
- 10369723
- Journal Name:
- Advanced Intelligent Systems
- Volume:
- 4
- Issue:
- 8
- ISSN:
- 2640-4567
- Publisher:
- Wiley Blackwell (John Wiley & Sons)
- Sponsoring Org:
- National Science Foundation
More Like this
-
High-quality 3D image recognition is an important component of many vision and robotics systems. However, the accurate processing of these images requires the use of compute-expensive 3D Convolutional Neural Networks (CNNs). To address this challenge, we propose the use of Spiking Neural Networks (SNNs) that are generated from iso-architecture CNNs and trained with quantization-aware gradient descent to optimize their weights, membrane leak, and firing thresholds. During both training and inference, the analog pixel values of a 3D image are directly applied to the input layer of the SNN without the need to convert to a spike-train. This significantly reduces the training and inference latency and results in high degree of activation sparsity, which yields significant improvements in computational efficiency. However, this introduces energy-hungry digital multiplications in the first layer of our models, which we propose to mitigate using a processing-in-memory (PIM) architecture. To evaluate our proposal, we propose a 3D and a 3D/2D hybrid SNN-compatible convolutional architecture and choose hyperspectral imaging (HSI) as an application for 3D image recognition. We achieve overall test accuracy of 98.68, 99.50, and 97.95% with 5 time steps (inference latency) and 6-bit weight quantization on the Indian Pines, Pavia University, and Salinas Scene datasets, respectively.more »
-
HyDREA: Utilizing Hyperdimensional Computing For A More Robust and Efficient Machine Learning SystemToday’s systems, rely on sending all the data to the cloud, and then use complex algorithms, such as Deep Neural Networks, which require billions of parameters and many hours to train a model. In contrast, the human brain can do much of this learning effortlessly. Hyperdimensional (HD) Computing aims to mimic the behavior of the human brain by utilizing high dimensional representations. This leads to various desirable properties that other Machine Learning (ML) algorithms lack such as: robustness to noise in the system and simple, highly parallel operations. In this paper, we propose \(\mathsf {HyDREA} \) , a Hy per D imensional Computing system that is R obust, E fficient, and A ccurate. We propose a Processing-in-Memory (PIM) architecture that works in a federated learning environment with challenging communication scenarios that cause errors in the transmitted data. \(\mathsf {HyDREA} \) adaptively changes the bitwidth of the model based on the signal to noise ratio (SNR) of the incoming sample to maintain the accuracy of the HD model while achieving significant speedup and energy efficiency. Our PIM architecture is able to achieve a speedup of 28 × and 255 × better energy efficiency compared to the baseline PIM architecture for Classificationmore »
-
Abstract Recurrent neural networks have led to breakthroughs in natural language processing and speech recognition. Here we show that recurrent networks, specifically long short-term memory networks can also capture the temporal evolution of chemical/biophysical trajectories. Our character-level language model learns a probabilistic model of 1-dimensional stochastic trajectories generated from higher-dimensional dynamics. The model captures Boltzmann statistics and also reproduces kinetics across a spectrum of timescales. We demonstrate how training the long short-term memory network is equivalent to learning a path entropy, and that its embedding layer, instead of representing contextual meaning of characters, here exhibits a nontrivial connectivity between different metastable states in the underlying physical system. We demonstrate our model’s reliability through different benchmark systems and a force spectroscopy trajectory for multi-state riboswitch. We anticipate that our work represents a stepping stone in the understanding and use of recurrent neural networks for understanding the dynamics of complex stochastic molecular systems.
-
Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should producemore »
-
Many daily activities and psychophysical experiments involve keeping multiple items in working memory. When items take continuous values (e.g., orientation, contrast, length, loudness) they must be stored in a continuous structure of appropriate dimensions. We investigate how this structure is represented in neural circuits by training recurrent networks to report two previously shown stimulus orientations. We find the activity manifold for the two orientations resembles a Clifford torus. Although a Clifford and standard torus (the surface of a donut) are topologically equivalent, they have important functional differences. A Clifford torus treats the two orientations equally and keeps them in orthogonal subspaces, as demanded by the task, whereas a standard torus does not. We find and characterize the connectivity patterns that support the Clifford torus. Moreover, in addition to attractors that store information via persistent activity, our networks also use a dynamic code where units change their tuning to prevent new sensory input from overwriting the previously stored one. We argue that such dynamic codes are generally required whenever multiple inputs enter a memory system via shared connections. Finally, we apply our framework to a human psychophysics experiment in which subjects reported two remembered orientations. By varying the training conditions ofmore »