skip to main content


Title: Parameterised population models of transient non-Gaussian noise in the LIGO gravitational-wave detectors
Abstract

The two interferometric LIGO gravitational-wave observatories provide the most sensitive data to date to study the gravitational-wave universe. As part of a global network, they have completed their third observing run in which they observed many tens of signals from merging compact binary systems. It has long been known that a limiting factor in identifying transient gravitational-wave signals is the presence of transient non-Gaussian noise, which reduce the ability of astrophysical searches to detect signals confidently. Significant efforts are taken to identify and mitigate this noise at the source, but its presence persists, leading to the need for software solutions. Taking a set of transient noise artefacts categorised by the GravitySpy software during the O3a observing era, we produce parameterised population models of the noise projected into the space of astrophysical model parameters of merging binary systems. We compare the inferred population properties of transient noise artefacts with observed astrophysical systems from the GWTC2.1 catalogue. We find that while the population of astrophysical systems tend to have near equal masses and moderate spins, transient noise artefacts are typically characterised by extreme mass ratios and large spins. This work provides a new method to calculate the consistency of an observed candidate with a given class of noise artefacts. This approach could be used in assessing the consistency of candidates found by astrophysical searches (i.e. determining if they are consistent with a known glitch class). Furthermore, the approach could be incorporated into astrophysical searches directly, potentially improving the reach of the detectors, though only a detailed study would verify this.

 
more » « less
NSF-PAR ID:
10369729
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
39
Issue:
17
ISSN:
0264-9381
Page Range / eLocation ID:
Article No. 175004
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Interferometric gravitational-wave observatories have opened a new era in astronomy. The rich data produced by an international network enable detailed analysis of the curved space-time around black holes. With nearly 100 signals observed so far and thousands expected in the next decade, their population properties enable insights into stellar evolution and the expansion of our Universe. However, the detectors are afflicted by transient noise artefacts known as ‘glitches’ which contaminate the signals and bias inferences. Of the 90 signals detected to date, 18 were contaminated by glitches. This feasibility study explores a new approach to transient gravitational-wave data analysis using Gaussian processes, which model the underlying physics of the glitch-generating mechanism rather than the explicit realization of the glitch itself. We demonstrate that if the Gaussian process kernel function can adequately model the glitch morphology, we can recover the parameters of simulated signals. Moreover, we find that the Gaussian processes kernels used in this work are well suited to modelling long-duration glitches which are most challenging for existing glitch-mitigation approaches. Finally, we show how the time-domain nature of our approach enables a new class of time-domain tests of General Relativity, performing a re-analysis of the inspiral-merger-ringdown test on the first observed binary black hole merger. Our investigation demonstrates the feasibility of the Gaussian processes as an alternative to the traditional framework but does not yet establish them as a replacement. Therefore, we conclude with an outlook on the steps needed to realize the full potential of the Gaussian process approach.

     
    more » « less
  2. ABSTRACT

    The detection of an intermediate-mass black hole population (102–106 M⊙) will provide clues to their formation environments (e.g. discs of active galactic nuclei, globular clusters) and illuminate a potential pathway to produce supermassive black holes. Ground-based gravitational-wave detectors are sensitive to mergers that can form intermediate-mass black holes weighing up to ∼450 M⊙. However, ground-based detector data contain numerous incoherent short duration noise transients that can mimic the gravitational-wave signals from merging intermediate-mass black holes, limiting the sensitivity of searches. Here, we follow-up on binary black hole merger candidates using a ranking statistic that measures the coherence or incoherence of triggers in multiple-detector data. We use this statistic to rank candidate events, initially identified by all-sky search pipelines, with lab-frame total masses ≳ 55 M⊙ using data from LIGO’s second observing run. Our analysis does not yield evidence for new intermediate-mass black holes. However, we find support for eight stellar-mass binary black holes not reported in the first LIGO–Virgo gravitational wave transient catalogue GWTC-1, seven of which have been previously reported by other catalogues.

     
    more » « less
  3. Abstract Orbital eccentricity is one of the most robust discriminators for distinguishing between dynamical and isolated formation scenarios of binary black hole mergers using gravitational-wave observatories such as LIGO and Virgo. Using state-of-the-art cluster models, we show how selection effects impact the detectable distribution of eccentric mergers from clusters. We show that the observation (or lack thereof) of eccentric binary black hole mergers can significantly constrain the fraction of detectable systems that originate from dynamical environments, such as dense star clusters. After roughly 150 observations, observing no eccentric binary signals would indicate that clusters cannot make up the majority of the merging binary black hole population in the local universe (95% credibility). However, if dense star clusters dominate the rate of eccentric mergers and a single system is confirmed to be measurably eccentric in the first and second gravitational-wave transient catalogs, clusters must account for at least 14% of detectable binary black hole mergers. The constraints on the fraction of detectable systems from dense star clusters become significantly tighter as the number of eccentric observations grows and will be constrained to within 0.5 dex once 10 eccentric binary black holes are observed. 
    more » « less
  4. ABSTRACT

    Gravitational waves from binary neutron star post-merger remnants have the potential to uncover the physics of the hot nuclear equation of state. These gravitational-wave signals are high frequency (∼kHz) and short-lived ($\mathcal {O}(10\, \mathrm{ms})$), which introduces potential problems for data analysis algorithms due to the presence of non-stationary and non-Gaussian noise artefacts in gravitational-wave observatories. We quantify the degree to which these noise features in LIGO data may affect our confidence in identifying post-merger gravitational-wave signals. We show that the combination of vetoing data with non-stationary glitches and the application of the Allen χ2 veto (usually reserved for long-lived lower frequency gravitational-wave signals), allows one to confidently detect post-merger signals with signal-to-noise ratio ρ ≳ 8. We discuss the need to incorporate the data quality checks and vetoes into realistic post-merger gravitational-wave searches, and describe their relevance to calculating realistic false-alarm and false-dismissal rates.

     
    more » « less
  5. Intermediate-mass black holes (IMBHs) span the approximate mass range 100−10 5   M ⊙ , between black holes (BHs) that formed by stellar collapse and the supermassive BHs at the centers of galaxies. Mergers of IMBH binaries are the most energetic gravitational-wave sources accessible by the terrestrial detector network. Searches of the first two observing runs of Advanced LIGO and Advanced Virgo did not yield any significant IMBH binary signals. In the third observing run (O3), the increased network sensitivity enabled the detection of GW190521, a signal consistent with a binary merger of mass ∼150  M ⊙ providing direct evidence of IMBH formation. Here, we report on a dedicated search of O3 data for further IMBH binary mergers, combining both modeled (matched filter) and model-independent search methods. We find some marginal candidates, but none are sufficiently significant to indicate detection of further IMBH mergers. We quantify the sensitivity of the individual search methods and of the combined search using a suite of IMBH binary signals obtained via numerical relativity, including the effects of spins misaligned with the binary orbital axis, and present the resulting upper limits on astrophysical merger rates. Our most stringent limit is for equal mass and aligned spin BH binary of total mass 200  M ⊙ and effective aligned spin 0.8 at 0.056 Gpc −3 yr −1 (90% confidence), a factor of 3.5 more constraining than previous LIGO-Virgo limits. We also update the estimated rate of mergers similar to GW190521 to 0.08 Gpc −3 yr −1 . 
    more » « less