skip to main content


Title: Untangling the network effects of productivity and prominence among scientists
Abstract

While inequalities in science are common, most efforts to understand them treat scientists as isolated individuals, ignoring the network effects of collaboration. Here, we develop models that untangle the network effects of productivity defined as paper counts, and prominence referring to high-impact publications, of individual scientists from their collaboration networks. We find that gendered differences in the productivity and prominence of mid-career researchers can be largely explained by differences in their coauthorship networks. Hence, collaboration networks act as a form of social capital, and we find evidence of their transferability from senior to junior collaborators, with benefits that decay as researchers age. Collaboration network effects can also explain a large proportion of the productivity and prominence advantages held by researchers at prestigious institutions. These results highlight a substantial role of social networks in driving inequalities in science, and suggest that collaboration networks represent an important form of unequally distributed social capital that shapes who makes what scientific discoveries.

 
more » « less
NSF-PAR ID:
10369735
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Successful management and mitigation of marine challenges depends on cooperation and knowledge sharing which often occurs across culturally diverse geographic regions. Global ocean science collaboration is therefore essential for developing global solutions. Building effective global research networks that can enable collaboration also need to ensure inter- and transdisciplinary research approaches to tackle complex marine socio-ecological challenges. To understand the contribution of interdisciplinary global research networks to solving these complex challenges, we use the Integrated Marine Biosphere Research (IMBeR) project as a case study. We investigated the diversity and characteristics of 1,827 scientists from 11 global regions who were attendees at different IMBeR global science engagement opportunities since 2009. We also determined the role of social science engagement in natural science based regional programmes (using key informants) and identified the potential for enhanced collaboration in the future. Event attendees were predominantly from western Europe, North America, and East Asia. But overall, in the global network, there was growing participation by females, students and early career researchers, and social scientists, thus assisting in moving toward interdisciplinarity in IMBeR research. The mainly natural science oriented regional programmes showed mixed success in engaging and collaborating with social scientists. This was mostly attributed to the largely natural science (i.e., biological, physical) goals and agendas of the programmes, and the lack of institutional support and push to initiate connections with social science. Recognising that social science research may not be relevant to all the aims and activities of all regional programmes, all researchers however, recognised the (potential) benefits of interdisciplinarity, which included broadening scientists’ understanding and perspectives, developing connections and interlinkages, and making science more useful. Pathways to achieve progress in regional programmes fell into four groups: specific funding, events to come together, within-programme-reflections, and social science champions. Future research programmes should have a strategic plan to be truly interdisciplinary, engaging natural and social sciences, as well as aiding early career professionals to actively engage in such programmes. 
    more » « less
  2. Abstract

    Social scientists have long appreciated that relationships between individuals cannot be described from observing a single domain, and that the structure across domains of interaction can have important effects on outcomes of interest (e.g., cooperation; Durkheim, 1893). One debate explicitly about this surrounds food sharing. Some argue that failing to find reciprocal food sharing means that some process other than reciprocity must be occurring, whereas others argue for models that allow reciprocity to span domains in the form of trade (Kaplan and Hill, 1985.). Multilayer networks, high‐dimensional networks that allow us to consider multiple sets of relationships at the same time, are ubiquitous and have consequences, so processes giving rise to them are important social phenomena. The analysis of multi‐dimensional social networks has recently garnered the attention of the network science community (Kivelä et al., 2014). Recent models of these processes show how ignoring layer interdependencies can lead one to miss why a layer formed the way it did, and/or draw erroneous conclusions (Górski et al., 2018). Understanding the structuring processes that underlie multiplex networks will help understand increasingly rich data sets, giving more accurate and complete pictures of social interactions.

     
    more » « less
  3. Abstract

    Part of the reason women are disadvantaged in the labor market is because gender inequalities define social networks of the workplace. In the current project, I consider how gender shapes professional networks by focusing on the R&B/hip hop industry as an empirical case study. By conceptualizing the collaboration patterns between performers of popular R&B/hip hop songs from 2012 to 2020 as a network, I apply exponential random graph models (ERGMs) and find that women tend to occupy marginalized positions when compared to their male peers. Then, I adopt a social exchange framework to argue that critical acclaim is a resource that is associated with higher odds of collaborating for all artists, though gender differences define this process. For instance, the largest gender gaps in collaboration are present among artists who have either won Grammy awards or never received nominations for such honors. These findings suggest that female artists with lower status are often excluded from collaboration opportunities. Once women acquire enough prestige to “make up” for their gender, they may avoid collaborations because gender stereotypes challenge their decision-making power within these interactions.

     
    more » « less
  4. Academic productivity is realized through resources obtained from professional networks in which scientists are embedded. Using a national survey of academic faculty in Science, Technology, Engineering, and Mathematics (STEM) fields across multiple institution types, we examine how the structure of professional networks affects scholarly productivity and how those effects may differ by race, ethnicity, and gender. We find that network size masks important differences in composition. Using negative binomial regression, we find that both the size and composition of professional networks affect scientific productivity, but bigger is not always better. We find that instrumental networks increase scholarly productivity, while advice networks reduce it. There are important interactive effects that are masked by modeling only direct effects. We find that white men are especially advantaged by instrumental networks, and women are especially advantaged by advice networks. 
    more » « less
  5. Contemporary science has been characterized by an exponential growth in publications and a rise of team science. At the same time, there has been an increase in the number of awarded PhD degrees, which has not been accompanied by a similar expansion in the number of academic positions. In such a competitive environment, an important measure of academic success is the ability to maintain a long active career in science. In this paper, we study workforce trends in three scientific disciplines over half a century. We find dramatic shortening of careers of scientists across all three disciplines. The time over which half of the cohort has left the field has shortened from 35 y in the 1960s to only 5 y in the 2010s. In addition, we find a rapid rise (from 25 to 60% since the 1960s) of a group of scientists who spend their entire career only as supporting authors without having led a publication. Altogether, the fraction of entering researchers who achieve full careers has diminished, while the class of temporary scientists has escalated. We provide an interpretation of our empirical results in terms of a survival model from which we infer potential factors of success in scientific career survivability. Cohort attrition can be successfully modeled by a relatively simple hazard probability function. Although we find statistically significant trends between survivability and an author’s early productivity, neither productivity nor the citation impact of early work or the level of initial collaboration can serve as a reliable predictor of ultimate survivability.

     
    more » « less