ABSTRACT Despite the rich observational results on interstellar magnetic fields in star-forming regions, it is still unclear how dynamically significant the magnetic fields are at varying physical scales, because direct measurement of the field strength is observationally difficult. The Davis–Chandrasekhar–Fermi (DCF) method has been the most commonly used method to estimate the magnetic field strength from polarization data. It is based on the assumption that gas turbulent motion is the driving source of field distortion via linear Alfvén waves. In this work, using MHD simulations of star-forming clouds, we test the validity of the assumption underlying the DCF method by examining its accuracy in the real 3D space. Our results suggest that the DCF relation between turbulent kinetic energy and magnetic energy fluctuation should be treated as a statistical result instead of a local property. We then develop and investigate several modifications to the original DCF method using synthetic observations, and propose new recipes to improve the accuracy of DCF-derived magnetic field strength. We further note that the biggest uncertainty in the DCF analysis may come from the linewidth measurement instead of the polarization observation, especially since the line-of-sight gas velocity can be used to estimate the gas volume density, another critical parameter in the DCF method. 
                        more » 
                        « less   
                    
                            
                            Magnetic Field Strength from Turbulence Theory. I. Using Differential Measure Approach
                        
                    
    
            Abstract The mean plane-of-sky magnetic field strength is traditionally obtained from the combination of polarization and spectroscopic data using the Davis–Chandrasekhar–Fermi (DCF) technique. However, we identify the major problem of the DCF technique to be its disregard of the anisotropic character of MHD turbulence. On the basis of the modern MHD turbulence theory we introduce a new way of obtaining magnetic field strength from observations. Unlike the DCF technique, the new technique uses not the dispersion of the polarization angle and line-of-sight velocities, but increments of these quantities given by the structure functions. To address the variety of astrophysical conditions for which our technique can be applied, we consider turbulence in both media with magnetic pressure higher than the gas pressure, corresponding, e.g., to molecular clouds, and media with gas pressure higher than the magnetic pressure, corresponding to the warm neutral medium. We provide general expressions for arbitrary admixtures of Alfvén, slow, and fast modes in these media and consider in detail particular cases relevant to diffuse media and molecular clouds. We successfully test our results using synthetic observations obtained from MHD turbulence simulations. We demonstrate that our differential measure approach, unlike the DCF technique, can be used to measure the distribution of magnetic field strengths, can provide magnetic field measurements with limited data, and is much more stable in the presence of induced large-scale variations of nonturbulent nature. Furthermore, our study uncovers the deficiencies of earlier DCF research. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1816234
- PAR ID:
- 10369753
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 935
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 77
- Size(s):
- Article No. 77
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract We study the properties of sub-Alfvénic magnetohydrodynamic (MHD) turbulence, i.e., turbulence with Alfvén mach numberMA=VL/VA< 1, whereVLis the velocity at the injection scale andVAis the Alfvén velocity. We demonstrate that MHD turbulence can have different properties, depending on whether it is driven by velocity or magnetic fluctuations. If the turbulence is driven by isotropic bulk forces acting upon the fluid, i.e., is velocity driven, in an incompressible conducting fluid we predict that the kinetic energy is times larger than the energy of magnetic fluctuations. This effect arises from the long parallel wavelength tail of the forcing, which excites modes withk∥/k⊥<MA. We also predict that as the MHD turbulent cascade reaches the strong regime, the energy of slow modes exceeds the energy of Alfvén modes by a factor . These effects are absent if the turbulence is driven through magnetic fluctuations at the injection scale. We confirm our predictions with numerical simulations. Since the assumption of magnetic and kinetic energy equipartition is at the core of the Davis–Chandrasekhar–Fermi (DCF) approach to measuring magnetic field strength in sub-Alfvénic turbulence, we conclude that the DCF technique is not universally applicable. In particular, we suggest that the dynamical excitation of long azimuthal wavelength modes in the galactic disk may compromise the use of the DCF technique. We discuss alternative expressions that can be used to obtain magnetic field strength from observations and consider ways of distinguishing the cases of velocity and magnetically driven turbulence using observational data.more » « less
- 
            Abstract The gradient technique is a promising tool with theoretical foundations based on the fundamental properties of MHD turbulence and turbulent reconnection. Its various incarnations use spectroscopic, synchrotron, and intensity data to trace the magnetic field and measure the media magnetization in terms of Alfvén Mach number. We provide an analytical theory of gradient measurements and quantify the effects of averaging gradients along the line of sight and over the plane of the sky. We derive analytical expressions that relate the properties of gradient distribution with the Alfvén Mach numberMA. We show that these measurements can be combined with measures of sonic Mach number or line broadening to obtain the magnetic field strength. The corresponding technique has advantages to the Davis–Chandrasekhar–Fermi way of obtaining the magnetic field strength.more » « less
- 
            ABSTRACT Observing 3D magnetic fields, including orientation and strength, within the interstellar medium is vital but notoriously difficult. However, recent advances in our understanding of anisotropic magnetohydrodynamic (MHD) turbulence demonstrate that MHD turbulence and 3D magnetic fields leave their imprints on the intensity features of spectroscopic observations. Leveraging these theoretical frameworks, we propose a novel Convolutional Neural Network (CNN) model to extract this embedded information, enabling the probe of 3D magnetic fields. This model examines the plane-of-the-sky magnetic field orientation (ϕ), the magnetic field’s inclination angle (γ) relative to the line-of-sight, and the total magnetization level (M$$_{\rm A}^{-1}$$) of the cloud. We train the model using synthetic emission lines of 13CO (J = 1–0) and C18O (J = 1–0), generated from 3D MHD simulations that span conditions from sub-Alfvénic to super-Alfvénic molecular clouds. Our tests confirm that the CNN model effectively reconstructs the 3D magnetic field topology and magnetization. The median uncertainties are under 5° for both ϕ and γ, and less than 0.2 for MA in sub-Alfvénic conditions (MA ≈ 0.5). In super-Alfvénic scenarios (MA ≈ 2.0), they are under 15° for ϕ and γ, and 1.5 for MA. We applied this trained CNN model to the L1478 molecular cloud. Results show a strong agreement between the CNN-predicted magnetic field orientation and that derived from Planck 353 GHz polarization. The CNN approach enabled us to construct the 3D magnetic field map for L1478, revealing a global inclination angle of ≈76° and a global MA of ≈1.07.more » « less
- 
            null (Ed.)ABSTRACT In the cold neutral medium, high out-of-equilibrium temperatures are created by intermittent dissipation processes, including shocks, viscous heating, and ambipolar diffusion. The high-temperature excursions are thought to explain the enhanced abundance of CH+ observed along diffuse molecular sightlines. Intermittent high temperatures should also have an impact on H2 line luminosities. We carry out simulations of magnetohydrodynamic (MHD) turbulence in molecular clouds including heating and cooling, and post-process them to study H2 line emission and hot-gas chemistry, particularly the formation of CH+. We explore multiple magnetic field strengths and equations of state. We use a new H2 cooling function for $$n_{\text{H}}\le 10^5\, {\text{cm}}^{-3}$$, $$T\le 5000\, {\text{K}}$$, and variable H2 fraction. We make two important simplifying assumptions: (i) the H2/H fraction is fixed everywhere and (ii) we exclude from our analysis regions where the ion–neutral drift velocity is calculated to be greater than 5 km s−1. Our models produce H2 emission lines in accord with many observations, although extra excitation mechanisms are required in some clouds. For realistic root-mean-square (rms) magnetic field strengths (≈10 μG) and velocity dispersions, we reproduce observed CH+ abundances. These findings contrast with those of Valdivia et al. (2017) Comparison of predicted dust polarization with observations by Planck suggests that the mean field is ≳5 µG, so that the turbulence is sub-Alfvénic. We recommend future work treating ions and neutrals as separate fluids to more accurately capture the effects of ambipolar diffusion on CH+ abundance.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
