skip to main content


Title: Magnetic Field Strength from Turbulence Theory. I. Using Differential Measure Approach
Abstract

The mean plane-of-sky magnetic field strength is traditionally obtained from the combination of polarization and spectroscopic data using the Davis–Chandrasekhar–Fermi (DCF) technique. However, we identify the major problem of the DCF technique to be its disregard of the anisotropic character of MHD turbulence. On the basis of the modern MHD turbulence theory we introduce a new way of obtaining magnetic field strength from observations. Unlike the DCF technique, the new technique uses not the dispersion of the polarization angle and line-of-sight velocities, but increments of these quantities given by the structure functions. To address the variety of astrophysical conditions for which our technique can be applied, we consider turbulence in both media with magnetic pressure higher than the gas pressure, corresponding, e.g., to molecular clouds, and media with gas pressure higher than the magnetic pressure, corresponding to the warm neutral medium. We provide general expressions for arbitrary admixtures of Alfvén, slow, and fast modes in these media and consider in detail particular cases relevant to diffuse media and molecular clouds. We successfully test our results using synthetic observations obtained from MHD turbulence simulations. We demonstrate that our differential measure approach, unlike the DCF technique, can be used to measure the distribution of magnetic field strengths, can provide magnetic field measurements with limited data, and is much more stable in the presence of induced large-scale variations of nonturbulent nature. Furthermore, our study uncovers the deficiencies of earlier DCF research.

 
more » « less
Award ID(s):
1816234
NSF-PAR ID:
10369753
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
935
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 77
Size(s):
["Article No. 77"]
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Despite the rich observational results on interstellar magnetic fields in star-forming regions, it is still unclear how dynamically significant the magnetic fields are at varying physical scales, because direct measurement of the field strength is observationally difficult. The Davis–Chandrasekhar–Fermi (DCF) method has been the most commonly used method to estimate the magnetic field strength from polarization data. It is based on the assumption that gas turbulent motion is the driving source of field distortion via linear Alfvén waves. In this work, using MHD simulations of star-forming clouds, we test the validity of the assumption underlying the DCF method by examining its accuracy in the real 3D space. Our results suggest that the DCF relation between turbulent kinetic energy and magnetic energy fluctuation should be treated as a statistical result instead of a local property. We then develop and investigate several modifications to the original DCF method using synthetic observations, and propose new recipes to improve the accuracy of DCF-derived magnetic field strength. We further note that the biggest uncertainty in the DCF analysis may come from the linewidth measurement instead of the polarization observation, especially since the line-of-sight gas velocity can be used to estimate the gas volume density, another critical parameter in the DCF method. 
    more » « less
  2. ABSTRACT

    Interaction of three-dimensional magnetic fields, turbulence, and self-gravity in the molecular cloud is crucial in understanding star formation but has not been addressed so far. In this work, we target the low-mass star-forming region L1688 and use the spectral emissions of 12CO, 13CO, C18O, and H i, as well as polarized dust emissions. To obtain the 3D direction of the magnetic field, we employ the novel polarization fraction analysis. In combining with the plane-of-the-sky (POS) magnetic field strength derived from the Davis–Chandrasekhar–Fermi (DCF) method and the new differential measure analysis (DMA) technique, we present the first measurement of L1688’s three-dimensional magnetic field, including its orientation and strength. We find that L1688’s magnetic field has two statistically different inclination angles. The low-intensity tail has an inclination angle ≈55° on average, while that of the central dense clump is ≈30°. We find the global mean value of total magnetic field strength is Btot ≈ $135 \,\mathrm{\mu }{\rm G}$ from DCF and Btot ≈ $75 \,\mathrm{\mu }{\rm G}$ from DMA. We use the velocity gradient technique (VGT) to separate the magnetic fields’ POS orientation associated with L1688 and its foreground/background. The magnetic fields’ orientations are statistically coherent. The probability density function of H2 column density and VGT reveal that L1688 is potentially undergoing gravitational contraction at large scale ≈1.0 pc and gravitational collapse at small scale ≈0.2 pc. The gravitational contraction mainly along the magnetic field resulting in an approximate power-law relation $B_{\rm tot}\propto n_{\rm H}^{1/2}$ when volume density nH is less than approximately 6.0 × 103 cm−3.

     
    more » « less
  3. null (Ed.)
    ABSTRACT In the cold neutral medium, high out-of-equilibrium temperatures are created by intermittent dissipation processes, including shocks, viscous heating, and ambipolar diffusion. The high-temperature excursions are thought to explain the enhanced abundance of CH+ observed along diffuse molecular sightlines. Intermittent high temperatures should also have an impact on H2 line luminosities. We carry out simulations of magnetohydrodynamic (MHD) turbulence in molecular clouds including heating and cooling, and post-process them to study H2 line emission and hot-gas chemistry, particularly the formation of CH+. We explore multiple magnetic field strengths and equations of state. We use a new H2 cooling function for $n_{\text{H}}\le 10^5\, {\text{cm}}^{-3}$, $T\le 5000\, {\text{K}}$, and variable H2 fraction. We make two important simplifying assumptions: (i) the H2/H fraction is fixed everywhere and (ii) we exclude from our analysis regions where the ion–neutral drift velocity is calculated to be greater than 5 km s−1. Our models produce H2 emission lines in accord with many observations, although extra excitation mechanisms are required in some clouds. For realistic root-mean-square (rms) magnetic field strengths (≈10 μG) and velocity dispersions, we reproduce observed CH+ abundances. These findings contrast with those of Valdivia et al. (2017) Comparison of predicted dust polarization with observations by Planck suggests that the mean field is ≳5 µG, so that the turbulence is sub-Alfvénic. We recommend future work treating ions and neutrals as separate fluids to more accurately capture the effects of ambipolar diffusion on CH+ abundance. 
    more » « less
  4. ABSTRACT

    Observing 3D magnetic fields, including orientation and strength, within the interstellar medium is vital but notoriously difficult. However, recent advances in our understanding of anisotropic magnetohydrodynamic (MHD) turbulence demonstrate that MHD turbulence and 3D magnetic fields leave their imprints on the intensity features of spectroscopic observations. Leveraging these theoretical frameworks, we propose a novel Convolutional Neural Network (CNN) model to extract this embedded information, enabling the probe of 3D magnetic fields. This model examines the plane-of-the-sky magnetic field orientation (ϕ), the magnetic field’s inclination angle (γ) relative to the line-of-sight, and the total magnetization level (M$_{\rm A}^{-1}$) of the cloud. We train the model using synthetic emission lines of 13CO (J  = 1–0) and C18O (J  = 1–0), generated from 3D MHD simulations that span conditions from sub-Alfvénic to super-Alfvénic molecular clouds. Our tests confirm that the CNN model effectively reconstructs the 3D magnetic field topology and magnetization. The median uncertainties are under 5° for both ϕ and γ, and less than 0.2 for MA in sub-Alfvénic conditions (MA ≈ 0.5). In super-Alfvénic scenarios (MA ≈ 2.0), they are under 15° for ϕ and γ, and 1.5 for MA. We applied this trained CNN model to the L1478 molecular cloud. Results show a strong agreement between the CNN-predicted magnetic field orientation and that derived from Planck 353 GHz polarization. The CNN approach enabled us to construct the 3D magnetic field map for L1478, revealing a global inclination angle of ≈76° and a global MA of ≈1.07.

     
    more » « less
  5. ABSTRACT

    Wind-fed models offer a unique way to form predictive models of the accretion flow surrounding Sagittarius A*. We present 3D wind-fed magnetohydrodynamic (MHD) and general relativistic magnetohydrodynamic (GRMHD) simulations spanning the entire dynamic range of accretion from parsec scales to the event horizon. We expand on previous work by including non-zero black hole spin and dynamically evolved electron thermodynamics. Initial conditions for these simulations are generated from simulations of the observed Wolf–Rayet stellar winds in the Galactic Centre. The resulting flow tends to be highly magnetized (β ≈ 2) with an ∼r−1 density profile independent of the strength of magnetic fields in the winds. Our simulations reach the magnetically arrested disc (MAD) state for some, but not all cases. In tilted flows, standard and normal evolution (SANE) jets tend to align with the angular momentum of the gas at large scales, even if that direction is perpendicular to the black hole spin axis. Conversely, MAD jets tend to align with the black hole spin axis. The gas angular momentum shows similar behaviour: SANE flows tend to only partially align while MAD flows tend to fully align. With a limited number of dynamical free parameters, our models can produce accretion rates, 230 GHz flux, and unresolved linear polarization fractions roughly consistent with observations for several choices of electron heating fraction. Absent another source of large-scale magnetic field, winds with a higher degree of magnetization (e.g. where the magnetic pressure is 1/100 of the ram pressure in the winds) may be required to get a sufficiently large rotation measure with consistent sign.

     
    more » « less