skip to main content


Title: Materials for ultra-efficient, high-speed optoelectronics
Abstract

High-speed optoelectronics is central to many important developments in the communication, computing, sensing, imaging, and autonomous vehicle industries. With a sharp rise of attention on energy efficiency, researchers have proposed and demonstrated innovative materials, high-speed devices, and components integrated on a single platform that exhibit ultralow power consumption and ultrawide bandwidth. Recently reported material growth and device fabrication techniques offer the potential for high-density integration of optoelectronics close to the capability and cost of conventional electronics. A tremendous synergy can be attained by integrating multiple materials with superior properties on the same chip using heterogeneous integration, heteroepitaxy, nano-heteroepitaxy, and other co-packaging strategies within the complementary metal oxide semiconductor (CMOS) ecosystem. This issue ofMRS Bulletin offers an overview of the field and covers the latest developments on various ultraefficient materials, high-speed devices, their physical properties, current trends, and future directions in optoelectronics and their integration on a silicon platform.

Graphical abstract

 
more » « less
NSF-PAR ID:
10369766
Author(s) / Creator(s):
;
Publisher / Repository:
Cambridge University Press (CUP)
Date Published:
Journal Name:
MRS Bulletin
Volume:
47
Issue:
5
ISSN:
0883-7694
Page Range / eLocation ID:
p. 475-484
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Van der Waals (vdW) heterostructures of 2D atomically thin layered materials (2DLMs) provide a unique platform for constructing optoelectronic devices by staking 2D atomic sheets with unprecedented functionality and performance. A particular advantage of these vdW heterostructures is the energy band engineering of 2DLMs to achieve interlayer excitons through type‐II band alignment, enabling spectral range exceeding the cutoff wavelengths of the individual atomic sheets in the 2DLM. Herein, the high performance of GaTe/InSe vdW heterostructures device is reported. Unexpectedly, this GaTe/InSe vdWs p–n junction exhibits extraordinary detectivity in a new shortwave infrared (SWIR) spectrum, which is forbidden by the respective bandgap limits for the constituent GaTe (bandgap of ≈1.70 eV in both the bulk and monolayer) and InSe (bandgap of ≈1.20–1.80 eV depending on thickness reduction from bulk to monolayer). Specifically, the uncooled SWIR detectivity is up to ≈1014Jones at 1064 nm and ≈1012Jones at 1550 nm, respectively. This result indicates that the 2DLM vdW heterostructures with type‐II band alignment produce an interlayer exciton transition, and this advantage can offer a viable strategy for devising high‐performance optoelectronics in SWIR or even longer wavelengths beyond the individual limitations of the bandgaps and heteroepitaxy of the constituent atomic layers.

     
    more » « less
  2. Abstract

    Modern advanced photonic integrated circuits require dense integration of high-speed electro-optic functional elements on a compact chip that consumes only moderate power. Energy efficiency, operation speed, and device dimension are thus crucial metrics underlying almost all current developments of photonic signal processing units. Recently, thin-film lithium niobate (LN) emerges as a promising platform for photonic integrated circuits. Here, we make an important step towards miniaturizing functional components on this platform, reporting high-speed LN electro-optic modulators, based upon photonic crystal nanobeam resonators. The devices exhibit a significant tuning efficiency up to 1.98 GHz V−1, a broad modulation bandwidth of 17.5 GHz, while with a tiny electro-optic modal volume of only 0.58μm3. The modulators enable efficient electro-optic driving of high-Q photonic cavity modes in both adiabatic and non-adiabatic regimes, and allow us to achieve electro-optic switching at 11 Gb s−1with a bit-switching energy as low as 22 fJ. The demonstration of energy efficient and high-speed electro-optic modulation at the wavelength scale paves a crucial foundation for realizing large-scale LN photonic integrated circuits that are of immense importance for broad applications in data communication, microwave photonics, and quantum photonics.

     
    more » « less
  3. Abstract

    Accurate and efficient predictions of the quasiparticle properties of complex materials remain a major challenge due to the convergence issue and the unfavorable scaling of the computational cost with respect to the system size. QuasiparticleGWcalculations for two-dimensional (2D) materials are especially difficult. The unusual analytical behaviors of the dielectric screening and the electron self-energy of 2D materials make the conventional Brillouin zone (BZ) integration approach rather inefficient and require an extremely densek-grid to properly converge the calculated quasiparticle energies. In this work, we present a combined nonuniform subsampling and analytical integration method that can drastically improve the efficiency of the BZ integration in 2DGWcalculations. Our work is distinguished from previous work in that, instead of focusing on the intricate dielectric matrix or the screened Coulomb interaction matrix, we exploit the analytical behavior of various terms of the convolved self-energy Σ(q) in the smallqlimit. This method, when combined with another acceleratedGWmethod that we developed recently, can drastically speed up (by over three orders of magnitude)GWcalculations for 2D materials. Our method allows fully convergedGWcalculations for complex 2D systems at a fraction of computational cost, facilitating future high throughput screening of the quasiparticle properties of 2D semiconductors for various applications. To demonstrate the capability and performance of our new method, we have carried out fully convergedGWcalculations for monolayer C2N, a recently discovered 2D material with a large unit cell, and investigate its quasiparticle band structure in detail.

     
    more » « less
  4. Abstract

    Materials with dynamically controlled electronic structures (i.e., upon external stimuli) are at the forefront of the renewable energy sector with applications as memory devices, smart supercapacitors, programmable solar cells, and field‐effect transistors. Moreover, their continued development as device components is critical for the field of optoelectronics since their performance is comparable, or could even surpass, the current benchmarks. Adaptive electronic properties are the main focus of this review that discusses recent developments in the modulation of electronic behavior that can be tuned using external stimuli in metal–organic frameworks (MOFs), covalent–organic frameworks (COFs), primarily inorganic hybrids, polymers, and graphitic‐type materials. Triggers to achieve “dynamic” behavior discussed within this manuscript are primarily light‐based switches that include different classes of photochromic molecules such as naphthalene diimide, viologen, diarylethene, azobenzene, and spiropyran. The effect of material dimensionality and photoswitch connectivity achieved through integration of photochromic moieties inside 0D, 1D, 2D, and 3D hybrid matrices is discussed. This review showcases the prospects of advancing the material and energy landscapes through employment of structural motifs with adaptive electronic structures occurring as a function of their dimensionality and connectivity.

     
    more » « less
  5. Abstract

    Extrusion‐based 3D printing, an emerging technology, has been previously used in the comprehensive fabrication of light‐emitting diodes using various functional inks, without cleanrooms or conventional microfabrication techniques. Here, polymer‐based photodetectors exhibiting high performance are fully 3D printed and thoroughly characterized. A semiconducting polymer ink is printed and optimized for the active layer of the photodetector, achieving an external quantum efficiency of 25.3%, which is comparable to that of microfabricated counterparts and yet created solely via a one‐pot custom built 3D‐printing tool housed under ambient conditions. The devices are integrated into image sensing arrays with high sensitivity and wide field of view, by 3D printing interconnected photodetectors directly on flexible substrates and hemispherical surfaces. This approach is further extended to create integrated multifunctional devices consisting of optically coupled photodetectors and light‐emitting diodes, demonstrating for the first time the multifunctional integration of multiple semiconducting device types which are fully 3D printed on a single platform. The 3D‐printed optoelectronic devices are made without conventional microfabrication facilities, allowing for flexibility in the design and manufacturing of next‐generation wearable and 3D‐structured optoelectronics, and validating the potential of 3D printing to achieve high‐performance integrated active electronic materials and devices.

     
    more » « less