skip to main content


Title: A new method to correct for host star variability in multiepoch observations of exoplanet transmission spectra
ABSTRACT

Transmission spectra of exoplanets orbiting active stars suffer from wavelength-dependent effects due to stellar photospheric heterogeneity. WASP-19b, an ultra-hot Jupiter (Teq ∼ 2100 K), is one such strongly irradiated gas-giant orbiting an active solar-type star. We present optical (520–900 nm) transmission spectra of WASP-19b obtained across eight epochs, using the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South telescope. We apply our recently developed Gaussian Processes regression based method to model the transit light-curve systematics and extract the transmission spectrum at each epoch. We find that WASP-19b’s transmission spectrum is affected by stellar variability at individual epochs. We report an observed anticorrelation between the relative slopes and offsets of the spectra across all epochs. This anticorrelation is consistent with the predictions from the forward transmission models, which account for the effect of unocculted stellar spots and faculae measured previously for WASP-19. We introduce a new method to correct for this stellar variability effect at each epoch by using the observed correlation between the transmission spectral slopes and offsets. We compare our stellar variability corrected GMOS transmission spectrum with previous contradicting MOS measurements for WASP-19b and attempt to reconcile them. We also measure the amplitude and timescale of broad-band stellar variability of WASP-19 from TESS photometry, which we find to be consistent with the effect observed in GMOS spectroscopy and ground-based broad-band photometric long-term monitoring. Our results ultimately caution against combining multiepoch optical transmission spectra of exoplanets orbiting active stars before correcting each epoch for stellar variability.

 
more » « less
NSF-PAR ID:
10369815
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 5018-5042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present new Gemini/GMOS optical spectroscopy of 16 extreme variability quasars (EVQs) that dimmed by more than 1.5 mag in the g band between the Sloan Digital Sky Survey (SDSS) and the Dark Energy Survey epochs (separated by a few years in the quasar rest frame). These EVQs are selected from quasars in the SDSS Stripe 82 region, covering a redshift range of 0.5 < z < 2.1. Nearly half of these EVQs brightened significantly (by more than 0.5 mag in the g band) in a few years after reaching their previous faintest state, and some EVQs showed rapid (non-blazar) variations of greater than 1–2 mag on time-scales of only months. To increase sample statistics, we use a supplemental sample of 33 EVQs with multi-epoch spectra from SDSS that cover the broad Mg ii λ2798 line. Leveraging on the large dynamic range in continuum variability between the multi-epoch spectra, we explore the associated variations in the broad Mg ii line, whose variability properties have not been well studied before. The broad Mg ii flux varies in the same direction as the continuum flux, albeit with a smaller amplitude, which indicates at least some portion of Mg ii is reverberating to continuum changes. However, the full width at half-maximum (FWHM) of Mg ii does not vary accordingly as continuum changes for most objects in the sample, in contrast to the case of the broad Balmer lines. Using the width of broad Mg ii to estimate the black hole mass with single epoch spectra therefore introduces a luminosity-dependent bias. 
    more » « less
  2. ABSTRACT

    Using the Las Cumbres Observatory Global Telescope Network (LCOGT), we have obtained multi-epoch photometry of the young cluster Mon R2. We have monitored over 6000 sources with i-band between 13 and 23 mag within a 26 × 26 arcmin2 field of view. For each star, we collected ∼1500 photometric points covering a temporal window of 23 d. Based on these data, we have measured rotation-modulated of 136 stars and identified around 90 additional variables, including 14 eclipsing binary candidates. Moreover, we found 298 other variables with photometric high-scatter. In addition, we have obtained r-band and Hα narrow-band photometry of the cluster with LCOGT and low-resolution optical spectroscopy of 229 stars with GMOS-Gemini. We used the Gaia data from the periodic stars and objects with Hα or IR-excesses, which are mostly low-mass pre-main sequence stars (<1 M⊙) in the cluster to estimate the distance (825 ± 51 pc) and the mean proper motions (μαcos(δ) = −2.75 mas yr−1 and μδ = 1.15 mas yr−1) of its members. This allows us to use the Gaia data to identify additional Mon R2 member candidates. We also used Pan-STARRS photometry from our LCOGT sources to construct a more precise H-R diagram, from which we estimate the mean age of the cluster and identify other possible members including eleven spectroscopy brown dwarf with M7 to M9 GMOS spectral types. Finally, we combined our membership lists with Spitzer infrared photometry to investigate the incidence of stars with discs and the effect these have on stellar rotation.

     
    more » « less
  3. ABSTRACT

    Using spectra obtained with the VLT/FORS2 and Gemini-S/GMOS-S instruments, we have investigated carbon, nitrogen, and sodium abundances in a sample of red giant members of the Small Magellanic Cloud star cluster Kron 3. The metallicity and luminosity of the cluster are comparable to those of Galactic globular clusters but it is notably younger (age ≈ 6.5 Gyr). We have measured the strengths of the CN and CH molecular bands, finding a bimodal CN band-strength distribution and a CH/CN anticorrelation. Application of spectrum synthesis techniques reveals that the difference in the mean [N/Fe] and [C/Fe] values for the CN-strong and CN-weak stars are Δ <[N/Fe]> = 0.63 ± 0.16 dex and Δ <[C/Fe]> = −0.01 ± 0.07 dex after applying corrections for evolutionary mixing. We have also measured sodium abundances from the Na D lines finding an observed range in [Na/Fe] of ∼0.6 dex that correlates positively with the [N/Fe] values and a Δ <[Na/Fe]> = 0.12 ± 0.12 dex. While the statistical significance of the sodium abundance difference is not high, the observed correlation between the Na and N abundances supports its existence. The outcome represents the first star-by-star demonstration of correlated abundance variations involving sodium in an intermediate-age star cluster. The results add to existing photometric and spectroscopic indications of the presence of multiple populations in intermediate-age clusters with masses in excess of ∼105 M⊙. It confirms that the mechanism(s) responsible for the multiple populations in ancient globular clusters cannot solely be an early cosmological effect applying only in old clusters.

     
    more » « less
  4. Abstract

    Transmission spectroscopy offers an invaluable opportunity to characterize the atmospheres of exoplanets. We present new ground-based optical transmission spectra of the hot Jupiter HD 189733b, derived from nine transits observed over a six year time span (2016–2021) using near-simultaneousugribroadband observations. We achieve an average (best) precision of 435 (280) ppm by implementing an optical diffuser on the prime focus spectrograph from the 2.3 m Wyoming Infrared Observatory telescope. The data provide new measurements of the apparent planetary radius with respect to the stellar radius, the spectral index of atmospheric opacity, and the time variability of the two quantities. Our results indicate an enhanced spectral slope in the optical regime ≈2.4 times steeper than would be expected from canonical Rayleigh scattering and that is consistent with earlier measurements of a super-Rayleigh slope (SRS). While the effect of stellar activity on the transmission spectrum complicates the measurement of the spectral slope, our multiepoch data set over six years can measure and average over stellar variations, yielding a mean spectral index of −9.9 ± 4.4. The 1200 K equilibrium temperature of HD 189733b places it in a sweet spot for the formation of SRSs and is consistent with vigorously mixing hazes in the atmosphere. Additionally, we find variations in the depth of the lightcurve during two of the transits, explainable as an increase in occulted star spots during June 2021. Although the star is active, the mean level of stellar activity does not seem to vary dramatically over our six years of observations, leading us to conclude that the variability in stellar activity is modest at most.

     
    more » « less
  5. ABSTRACT

    Traditionally, ground-based spectrophotometric observations probing transiting exoplanet atmospheres have employed a linear map between comparison and target star light curves (e.g. via differential spectrophotometry) to correct for systematics contaminating the transit signal. As an alternative to this conventional method, we introduce a new Gaussian Processes (GP) regression-based method to analyse ground-based spectrophotometric data. Our new method allows for a generalized non-linear mapping between the target transit light curves and the time-series used to detrend them. This represents an improvement compared to previous studies because the target and comparison star fluxes are affected by different telluric and instrumental systematics, which are complex and non-linear. We apply our method to six Gemini/GMOS transits of the warm (Teq  = 990 K) Neptune HAT-P-26b. We obtain on average ∼20  per cent better transit depth precision and residual scatter on the white light curve compared to the conventional method when using the comparison star light curve as a GP regressor and ∼20  per cent worse when explicitly not using the comparison star. Ultimately, with only a cost of 30 per cent precision on the transmission spectra, our method overcomes the necessity of using comparison stars in the instrument field of view, which has been one of the limiting factors for ground-based observations of the atmospheres of exoplanets transiting bright stars. We obtain a flat transmission spectrum for HAT-P-26b in the range of 490–900 nm that can be explained by the presence of a grey opacity cloud deck, and indications of transit timing variations, both of which are consistent with previous measurements.

     
    more » « less