ABSTRACT The majority of binary star systems that host exoplanets will spend the first portion of their lives within a star-forming cluster that may drive dynamical evolution of the binary-planet system. We perform numerical simulations of S-type planets, with masses and orbital architecture analogous to the Solar system’s four gas giants, orbiting within the influence of a $$0.5\, \mathrm{M}_{\odot }$$ binary companion. The binary-planet system is integrated simultaneously with an embedded stellar cluster environment. ∼10 per cent of our planetary systems are destabilized when perturbations from our cluster environment drive the binary periastron towards the planets. This destabilization occurs despite all of our systems being initialized with binary orbits that would allow stable planets in the absence of the cluster. The planet–planet scattering triggered in our systems typically results in the loss of lower mass planets and the excitement of the eccentricities of surviving higher mass planets. Many of our planetary systems that go unstable also lose their binary companions prior to cluster dispersal and can therefore masquerade as hosts of eccentric exoplanets that have spent their entire histories as isolated stars. The cluster-driven binary orbital evolution in our simulations can also generate planetary systems with misaligned spin–orbit angles. This is typically done as the planetary system precesses as a rigid disc under the influence of an inclined binary, and those systems with the highest spin–orbit angles should often retain their binary companion and possess multiple surviving planets.
more »
« less
Low spin-axis variations of circumbinary planets
ABSTRACT Having a massive moon has been considered as a primary mechanism for stabilized planetary obliquity, an example of which being our Earth. This is, however, not always consistent with the exoplanetary cases. This article details the discovery of an alternative mechanism, namely that planets orbiting around binary stars tend to have low spin-axis variations. This is because the large quadrupole potential of the stellar binary could speed up the planetary orbital precession, and detune the system out of secular spin-orbit resonances. Consequently, habitable zone planets around the stellar binaries in low inclination orbits hold higher potential for regular seasonal changes comparing to their single star analogues.
more »
« less
- Award ID(s):
- 1847802
- PAR ID:
- 10369865
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 515
- Issue:
- 4
- ISSN:
- 0035-8711
- Page Range / eLocation ID:
- p. 5175-5184
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Young pre-main sequence stars exhibit elevated X-ray levels due to their strong magnetic activity. Understanding young stars’ X-ray activity is essential for contextualizing the forming planets that they host. Binary stars present a unique environment that may influence planet formation and evolution. In this work, we assembled a sample of 65 systems with stellar characterization from the literature and X-ray fluxes from the XMM-Newton Extended Survey of the Taurus Molecular Cloud to investigate the potential relationship between binary separation and X-ray flux. We found that binary stars with separations smaller than the sample median may exhibit elevated X-ray flux compared to single stars. This suggests that binary companions could influence stellar and planetary evolution and warrants further investigation.more » « less
-
Abstract An Earth-analog orbiting within the habitable zone of α Centauri B was shown to undergo large variations in its obliquity, or axial tilt, which affects the planetary climate by altering the radiative flux for a given latitude. We examine the potential implications of these obliquity variations for climate through Milankovitch cycles using an energy balance model with ice growth and retreat. Similar to previous studies, the largest amplitude obliquity variations from spin-orbit resonances induce snowball states within the habitable zone, while moderate variations can allow for persistent ice caps or an ice belt. Particular outcomes for the global ice distribution can depend on the planetary orbit, obliquity, spin precession, binary orbit, and which star the Earth-analog orbits. An Earth-analog with an inclined orbit relative to the binary orbital plane can periodically transition through several global ice distribution states and risk runaway glaciation when ice appears at both poles and the equator. When determining the potential habitability for planets in general stellar binaries, more care must be taken due to the orbital and spin dynamics. For Earth-analogs within the habitable zone of α Centauri B can experience a much greater range of climate states, which is in contrast to Earth-analogs in the habitable zone of α Centauri A.more » « less
-
The two known planets in the planetary system of Teegarden’s Star are among the most Earth-like exoplanets currently known. Revisiting this nearby planetary system with two planets in the habitable zone aims at a more complete census of planets around very low-mass stars. A significant number of new radial velocity measurements from CARMENES, ESPRESSO, MAROON-X, and HPF, as well as photometry from TESS motivated a deeper search for additional planets. We confirm and refine the orbital parameters of the two know planets Teegarden’s Star b and c. We also report the detection of a third planet d with an orbital period of 26.13 ± 0.04 days and a minimum mass of 0.82 ± 0.17M⊕. A signal at 96 days is attributed to the stellar rotation period. The interpretation of a signal at 172 days remains open. The TESS data exclude transiting short-period planets down to about half an Earth radius. We compare the planetary system architecture of very low-mass stars. In the currently known configuration, the planetary system of Teegarden’s star is dynamically quite different from that of TRAPPIST-1, which is more compact, but dynamically similar to others such as GJ 1002.more » « less
-
A planet’s orbital alignment places important constraints on how a planet formed and consequently evolved. The dominant formation pathway of ultra-short-period planets (P < 1 day) is particularly mysterious as such planets most likely formed further out, and it is not well understood what drove their migration inwards to their current positions. Measuring the orbital alignment is difficult for smaller super-Earth/sub-Neptune planets, which give rise to smaller amplitude signals. Here we present radial velocities across two transits of 55 Cancri (Cnc) e, an ultra-short-period super-Earth, observed with the Extreme Precision Spectrograph. Using the classical Rossiter–McLaughlin method, we measure 55 Cnc e’s sky-projected stellar spin–orbit alignment (that is, the projected angle between the The star 55 Cancri (Cnc) A hosts five known exoplanets with minimum mass estimates ranging from approximately 8M⊕ to 3MJup and periods less than one day to nearly 20 years1–4. Of particular interest has been 55 Cnc e, one of the most massive known ultra-short-period planets (USPs) and the only planet around 55 Cnc found to transit5,6. It has an star’s spin axis and the planet’s orbit normal—will shed light on the formation and evolution of USPs, especially in the case of compact, multiplanet systems. It has been shown that USPs form a statistically distinct popula- tion of planets9 that tend to be misaligned with other planetary orbits in their system10. This suggests that USPs experience a unique migra- tion pathway that brings them close in to their host stars. This inward migration is most likely driven by dissipation due to star–planet tidal interactions that result from either non-zero eccentricities11,12 or plan- etary spin-axis tilts13. orbital period of 0.7365474 +1.3 × 10−6 days, a mass of 7.99 ± 0.33M −1.4 × 10−6 ⊕ and a radius of 1.853 +0.026 R⊕ (refs. 7,8). A precise measure of the −0.027 stellar spin–orbit alignment of 55 Cnc e—the angle between the host planet’s orbital axis and its host star’s spin axis) to be λ = 10 +17∘ with an +14∘ −20∘ unprojected angle of ψ = 23 −12∘. The best-fit Rossiter–McLaughlin model to the Extreme Precision Spectrograph data has a radial velocity semi- amplitude of just 0.41 +0.09 m s−1. The spin–orbit alignment of 55 Cnc e −0.10 favours dynamically gentle migration theories for ultra-short-period planets, namely tidal dissipation through low-eccentricity planet–planet interactions and/or planetary obliquity tides.more » « less
An official website of the United States government
