skip to main content

Title: High-contrast imaging of HD 29992 and HD 196385 with the Gemini Planet Imager

Based on high-contrast images obtained with the Gemini Planet Imager (GPI), we report the discovery of two point-like sources at angular separations ρ ∼ 0.18 and 0.80 arcsec from the stars HD 29992 and HD 196385. A combined analysis of the new GPI observations and images from the literature indicates that the source close to HD 29992 could be a companion to the star. Concerning HD 196385, the small number of contaminants (∼0.5) suggests that the detected source may be gravitationally bound to the star. For both systems, we discarded the presence of other potential companions with m > 75 MJup at ρ ∼ 0.3–1.3 arcsec. From stellar model atmospheres and low-resolution GPI spectra, we derive masses of ∼0.2–0.3 M⊙ for these sources. Using a Markov-chain Monte Carlo approach, we performed a joint fit of the new astrometry measurements and published radial velocity data to characterize the possible orbits. For HD 196385B, the median dynamic mass is in agreement with that derived from model atmospheres, whilst for HD 29992B the orbital fit favours masses close to the brown dwarf regime (∼0.08 M⊙). HD 29992 and HD 196385 might be two new binary systems with M-type stellar companions. However, new high angular resolution images would help to confirm more » definitively whether the detected sources are gravitationally bound to their respective stars, and permit tighter constraints on the orbital parameters of both systems.

« less
; ; ;
Publication Date:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range or eLocation-ID:
p. 4999-5008
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. HD 113337 is a main-sequence F6V field star more massive than the Sun. This star hosts one confirmed giant planet and possibly a second candidate, detected by radial velocities (RVs). The star also hosts a cold debris disc detected through the presence of an infrared excess, making it an interesting system to explore. Aims. We aim to bring new constraints on the star’s fundamental parameters, debris disc properties, and planetary companion(s) by combining complementary techniques. Methods. We used the VEGA interferometer on the CHARA array to measure the angular diameter of HD 113337. We derived its linear radius using the parallax from the Gaia Second Data Release. We computed the bolometric flux to derive its effective temperature and luminosity, and we estimated its mass and age using evolutionary tracks. Then, we used Herschel images to partially resolve the outer debris disc and estimate its extension and inclination. Next, we acquired high-contrast images of HD 113337 with the LBTI to probe the ~10–80 au separation range. Finally, we combined the deduced contrast maps with previous RVs of the star using the MESS2 software to bring upper mass limits on possible companions at all separations up to 80 au. We tookmore »advantage of the constraints on the age and inclination brought by fundamental parameter analysis and disc imaging, respectively, for this analysis. Results. We derive a limb-darkened angular diameter of 0.386 ± 0.009 mas that converts into a linear radius of 1.50 ± 0.04 R ⊙ for HD 113337. The fundamental parameter analysis leads to an effective temperature of 6774 ± 125 K and to two possible age solutions: one young within 14–21 Myr and one old within 0.8–1.7 Gyr. We partially resolve the known outer debris disc and model its emission. Our best solution corresponds to a radius of 85 ± 20 au, an extension of 30 ± 20 au, and an inclination within 10–30° for the outer disc. The combination of imaging contrast limits, published RV, and age and inclination solutions allows us to derive a first possible estimation of the true masses of the planetary companions: ~7 −2 +4 M Jup for HD 113337 b (confirmed companion) and ~16 −3 +10 M Jup for HD 113337 c (candidate companion). We also constrain possible additional companions at larger separations.« less

    Improving direct detection capability close to the star through improved star subtraction and post-processing techniques is vital for discovering new low-mass companions and characterizing known ones at longer wavelengths. We present results of 17 binary star systems observed with the Magellan adaptive optics system (MagAO) and the Clio infrared camera on the Magellan Clay Telescope using binary differential imaging (BDI). BDI is an application of reference differential imaging (RDI) and angular differential imaging (ADI) applied to wide binary star systems (2 arcsec <Δρ < 10 arcsec) within the isoplanatic patch in the infrared. Each star serves as the point spread function (PSF) reference for the other, and we performed PSF estimation and subtraction using principal component analysis. We report contrast and mass limits for the 35 stars in our initial survey using BDI with MagAO/Clio in L′ and 3.95 µm bands. Our achieved contrasts varied between systems, and spanned a range of contrasts from 3.0 to 7.5 magnitudes and a range of separations from 0.2 to 2 arcsec. Stars in our survey span a range of masses, and our achieved contrasts correspond to late-type M-dwarf masses down to ∼10 MJup. We also report detection of a candidate companion signal at 0.2 arcsecmore »(18 au) around HIP 67506 A (SpT G5V, mass ∼1.2 M⊙), which we estimate to be $\sim 60-90 \, \rm{M_{Jup}}$. We found that the effectiveness of BDI is highest for approximately equal brightness binaries in high-Strehl conditions.

    « less
  3. Abstract

    Stellar mass is a fundamental parameter that is key to our understanding of stellar formation and evolution, as well as the characterization of nearby exoplanet companions. Historically, stellar masses have been derived from long-term observations of visual or spectroscopic binary star systems. While advances in high-resolution imaging have enabled observations of systems with shorter orbital periods, measurements of stellar masses remain challenging, and relatively few have been precisely measured. We present a new statistical approach to measuring masses for populations of stars. Using Gaia astrometry, we analyze the relative orbital motion of >3800 wide binary systems comprising low-mass stars to establish a mass–magnitude relation in the GaiaGRPband spanning the absolute magnitude range 14.5 >MGRP> 4.0, corresponding to a mass range of 0.08MM≲ 1.0M. This relation is directly applicable to >30 million stars in the Gaia catalog. Based on comparison to existing mass–magnitude relations calibrated forKsmagnitudes from the Two Micron All Sky Survey, we estimate that the internal precision of our mass estimates is ∼10%. We use this relation to estimate masses for a volume-limited sample of ∼18,200 stars within 50 pc of the Sun and the present-day field mass function for stars withM≲ 1.0M, which wemore »find peaks at 0.16M. We investigate a volume-limited sample of wide binary systems with early-K dwarf primaries, complete for binary mass ratiosq> 0.2, and measure the distribution ofqat separations >100 au. We find that our distribution ofqis not uniform, rather decreasing towardq= 1.0.

    « less
  4. Abstract

    TESS has proven to be a powerful resource for finding planets, including those that orbit the most prevalent stars in our galaxy: M dwarfs. Identification of stellar companions (both bound and unbound) has become a standard component of the transiting planet confirmation process in order to assess the level of light-curve dilution and the possibility of the target being a false positive. Studies of stellar companions have also enabled investigations into stellar multiplicity in planet-hosting systems, which has wide-ranging implications for both exoplanet detection and characterization, as well as for the formation and evolution of planetary systems. Speckle and AO imaging are some of the most efficient and effective tools for revealing close-in stellar companions; we therefore present observations of 58 M-dwarf TOIs obtained using a suite of speckle imagers at the 3.5 m WIYN telescope, the 4.3 m Lowell Discovery Telescope, and the 8.1 m Gemini North and South telescopes. These observations, as well as near-infrared adaptive optics images obtained for a subset (14) of these TOIs, revealed only two close-in stellar companions. Upon surveying the literature, and cross-matching our sample with Gaia, SUPERWIDE, and the catalog from El-Badry et al., we reveal an additional 15 widely separatedmore »common proper motion companions. We also evaluate the potential for undetected close-in companions. Taking into consideration the sensitivity of the observations, our findings suggest that the orbital period distribution of stellar companions to planet-hosting M dwarfs is shifted to longer periods compared to the expected distribution for field M dwarfs.

    « less

    HD 62658 (B9p V) is a little-studied chemically peculiar star. Light curves obtained by the Kilodegree Extremely Little Telescope (KELT) and Transiting Exoplanet Survey Satellite (TESS) show clear eclipses with a period of about 4.75 d, as well as out-of-eclipse brightness modulation with the same 4.75 d period, consistent with synchronized rotational modulation of surface chemical spots. High-resolution ESPaDOnS circular spectropolarimetry shows a clear Zeeman signature in the line profile of the primary; there is no indication of a magnetic field in the secondary. PHOEBE modelling of the light curve and radial velocities indicates that the two components have almost identical masses of about 3 M⊙. The primary’s longitudinal magnetic field 〈Bz〉 varies between about +100 and −250 G, suggesting a surface magnetic dipole strength Bd = 850 G. Bayesian analysis of the Stokes V profiles indicates Bd = 650 G for the primary and Bd < 110 G for the secondary. The primary’s line profiles are highly variable, consistent with the hypothesis that the out-of-eclipse brightness modulation is a consequence of rotational modulation of that star’s chemical spots. We also detect a residual signal in the light curve after removal of the orbital and rotational modulations, which might be pulsational in origin; this could be consistent withmore »the weak line profile variability of the secondary. This system represents an excellent opportunity to examine the consequences of magnetic fields for stellar structure via comparison of two stars that are essentially identical with the exception that one is magnetic. The existence of such a system furthermore suggests that purely environmental explanations for the origin of fossil magnetic fields are incomplete.

    « less