skip to main content


Title: High-contrast imaging of HD 29992 and HD 196385 with the Gemini Planet Imager
ABSTRACT

Based on high-contrast images obtained with the Gemini Planet Imager (GPI), we report the discovery of two point-like sources at angular separations ρ ∼ 0.18 and 0.80 arcsec from the stars HD 29992 and HD 196385. A combined analysis of the new GPI observations and images from the literature indicates that the source close to HD 29992 could be a companion to the star. Concerning HD 196385, the small number of contaminants (∼0.5) suggests that the detected source may be gravitationally bound to the star. For both systems, we discarded the presence of other potential companions with m > 75 MJup at ρ ∼ 0.3–1.3 arcsec. From stellar model atmospheres and low-resolution GPI spectra, we derive masses of ∼0.2–0.3 M⊙ for these sources. Using a Markov-chain Monte Carlo approach, we performed a joint fit of the new astrometry measurements and published radial velocity data to characterize the possible orbits. For HD 196385B, the median dynamic mass is in agreement with that derived from model atmospheres, whilst for HD 29992B the orbital fit favours masses close to the brown dwarf regime (∼0.08 M⊙). HD 29992 and HD 196385 might be two new binary systems with M-type stellar companions. However, new high angular resolution images would help to confirm definitively whether the detected sources are gravitationally bound to their respective stars, and permit tighter constraints on the orbital parameters of both systems.

 
more » « less
NSF-PAR ID:
10369866
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
515
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
p. 4999-5008
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Brown dwarfs with well-measured masses, ages, and luminosities provide direct benchmark tests of substellar formation and evolutionary models. We report the first results from a direct imaging survey aiming to find and characterize substellar companions to nearby accelerating stars with the assistance of the Hipparcos–Gaia Catalog of Accelerations (HGCA). In this paper, we present a joint high-contrast imaging and astrometric discovery of a substellar companion to HD 176535 A, a K3.5V main-sequence star aged approximately $3.59_{-1.15}^{+0.87}$ Gyr at a distance of 36.99 ± 0.03 pc. In advance of our high-contrast imaging observations, we combined precision High Accuracy Radial velocity Planet Searcher (HARPS) Radial Velocities (RVs) and HGCA astrometry to predict the potential companion’s location and mass. We thereafter acquired two nights of KeckAO/NIRC2 direct imaging observations in the L′ band, which revealed a companion with a contrast of $\Delta L^{\prime }_p = 9.20\pm 0.06$ mag at a projected separation of ≈0.35 arcsec (≈13 au) from the host star. We revise our orbital fit by incorporating our dual-epoch relative astrometry using the open-source Markov chain Monte Carlo orbit fitting code orvara. We obtain a dynamical mass of $65.9_{-1.7}^{+2.0} M_{\rm Jup}$ that places HD 176535 B firmly in the brown dwarf regime. HD 176535 B is a new benchmark dwarf useful for constraining the evolutionary and atmospheric models of high-mass brown dwarfs. We found a luminosity of $\rm log(\mathit{ L}_{bol}/L_{\odot }) = -5.26\pm 0.07$ and a model-dependent effective temperature of 980 ± 35 K for HD 176535 B. We infer HD 176535 B to be a T dwarf from its mass, age, and luminosity. Our dynamical mass suggests that some substellar evolutionary models may be underestimating luminosity for high-mass T dwarfs. Given its angular separation and luminosity, HD 176535 B would make a promising candidate for Aperture Masking Interferometry with JWST and GRAVITY/Keck Planet Imager and Characterizer, and further spectroscopic characterization with instruments like the CHARIS/SCExAO/Subaru integral field spectrograph.

     
    more » « less
  2. Context. HD 113337 is a main-sequence F6V field star more massive than the Sun. This star hosts one confirmed giant planet and possibly a second candidate, detected by radial velocities (RVs). The star also hosts a cold debris disc detected through the presence of an infrared excess, making it an interesting system to explore. Aims. We aim to bring new constraints on the star’s fundamental parameters, debris disc properties, and planetary companion(s) by combining complementary techniques. Methods. We used the VEGA interferometer on the CHARA array to measure the angular diameter of HD 113337. We derived its linear radius using the parallax from the Gaia Second Data Release. We computed the bolometric flux to derive its effective temperature and luminosity, and we estimated its mass and age using evolutionary tracks. Then, we used Herschel images to partially resolve the outer debris disc and estimate its extension and inclination. Next, we acquired high-contrast images of HD 113337 with the LBTI to probe the ~10–80 au separation range. Finally, we combined the deduced contrast maps with previous RVs of the star using the MESS2 software to bring upper mass limits on possible companions at all separations up to 80 au. We took advantage of the constraints on the age and inclination brought by fundamental parameter analysis and disc imaging, respectively, for this analysis. Results. We derive a limb-darkened angular diameter of 0.386 ± 0.009 mas that converts into a linear radius of 1.50 ± 0.04 R ⊙ for HD 113337. The fundamental parameter analysis leads to an effective temperature of 6774 ± 125 K and to two possible age solutions: one young within 14–21 Myr and one old within 0.8–1.7 Gyr. We partially resolve the known outer debris disc and model its emission. Our best solution corresponds to a radius of 85 ± 20 au, an extension of 30 ± 20 au, and an inclination within 10–30° for the outer disc. The combination of imaging contrast limits, published RV, and age and inclination solutions allows us to derive a first possible estimation of the true masses of the planetary companions: ~7 −2 +4 M Jup for HD 113337 b (confirmed companion) and ~16 −3 +10 M Jup for HD 113337 c (candidate companion). We also constrain possible additional companions at larger separations. 
    more » « less
  3. ABSTRACT

    We report near-infrared long-baseline interferometric observations of the Hyades multiple system HD 284163, made with the Center for High Angular Resolution Astronomy array, as well as almost 43 yr of high-resolution spectroscopic monitoring at the Center for Astrophysics. Both types of observations resolve the 2.39 d inner binary, and also an outer companion in a 43.1 yr orbit. Our observations, combined with others from the literature, allow us to solve for the 3D inner and outer orbits, which are found to be at nearly right angles to each other. We determine the dynamical masses of the three stars (good to better than 1.4 per cent for the inner pair), as well as the orbital parallax. The secondary component (0.5245 ± 0.0047 M⊙) is now the lowest mass star with a dynamical mass measurement in the cluster. A comparison of these measurements with current stellar evolution models for the age and metallicity of the Hyades shows good agreement. All three stars display significant levels of chromospheric activity, consistent with the classification of HD 284163 as an RS CVn object. We present evidence that a more distant fourth star is physically associated, making this a hierarchical quadruple system.

     
    more » « less
  4. ABSTRACT

    Improving direct detection capability close to the star through improved star subtraction and post-processing techniques is vital for discovering new low-mass companions and characterizing known ones at longer wavelengths. We present results of 17 binary star systems observed with the Magellan adaptive optics system (MagAO) and the Clio infrared camera on the Magellan Clay Telescope using binary differential imaging (BDI). BDI is an application of reference differential imaging (RDI) and angular differential imaging (ADI) applied to wide binary star systems (2 arcsec <Δρ < 10 arcsec) within the isoplanatic patch in the infrared. Each star serves as the point spread function (PSF) reference for the other, and we performed PSF estimation and subtraction using principal component analysis. We report contrast and mass limits for the 35 stars in our initial survey using BDI with MagAO/Clio in L′ and 3.95 µm bands. Our achieved contrasts varied between systems, and spanned a range of contrasts from 3.0 to 7.5 magnitudes and a range of separations from 0.2 to 2 arcsec. Stars in our survey span a range of masses, and our achieved contrasts correspond to late-type M-dwarf masses down to ∼10 MJup. We also report detection of a candidate companion signal at 0.2 arcsec (18 au) around HIP 67506 A (SpT G5V, mass ∼1.2 M⊙), which we estimate to be $\sim 60-90 \, \rm{M_{Jup}}$. We found that the effectiveness of BDI is highest for approximately equal brightness binaries in high-Strehl conditions.

     
    more » « less
  5. Abstract

    The Transiting Exoplanet Survey Satellite (TESS) mission searches for new exoplanets. The observing strategy of TESS results in high-precision photometry of millions of stars across the sky, allowing for detailed asteroseismic studies of individual systems. In this work, we present a detailed asteroseismic analysis of the giant star HD 76920 hosting a highly eccentric giant planet (e= 0.878) with an orbital period of 415 days, using five sectors of TESS light curve that cover around 140 days of data. Solar-like oscillations in HD 76920 are detected around 52μHz by TESS for the first time. By utilizing asteroseismic modeling that takes classical observational parameters and stellar oscillation frequencies as constraints, we determine improved measurements of the stellar mass (1.22 ± 0.11M), radius (8.68 ± 0.34R), and age (5.2 ± 1.4 Gyr). With the updated parameters of the host star, we update the semimajor axis and mass of the planet asa= 1.165 ± 0.035 au andMpsini=3.57±0.22MJup. With an orbital pericenter of 0.142 ± 0.005 au, we confirm that the planet is currently far away enough from the star to experience negligible tidal decay until being engulfed in the stellar envelope. We also confirm that this event will occur within about 100 Myr, depending on the stellar model used.

     
    more » « less