skip to main content


Title: Hydroclimate and ENSO Variability Recorded by Oxygen Isotopes From Tree Rings in the South American Altiplano
Abstract

Hydroclimate variability in tropical South America is strongly regulated by the South American Summer Monsoon (SASM). However, past precipitation changes are poorly constrained due to limited observations and high‐resolution paleoproxies. We found that summer precipitation and the El Niño‐Southern Oscillation (ENSO) variability are well registered in tree‐ring stable oxygen isotopes (δ18OTR) ofPolylepis tarapacanain the Chilean and Bolivian Altiplano in the Central Andes (18–22°S, ∼4,500 m a.s.l.) with the northern forests having the strongest climate signal. More enrichedδ18OTRvalues were found at the southern sites likely due to the increasing aridity toward the southwest of the Altiplano. The climate signal ofP. tarapacana δ18OTRis the combined result of moisture transported from the Amazon Basin, modulated by the SASM, ENSO, and local evaporation, and emerges as a novel tree‐ring climate proxy for the southern tropical Andes.

 
more » « less
Award ID(s):
1702789 1903687 1504134 1702439 1743738 2103041
NSF-PAR ID:
10369910
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
4
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Theδ18O signal in ice cores from the Quelccaya Ice Cap (QIC), Peru, corresponds with and has been used to reconstruct Niño region sea surface temperatures (SSTs), but the physical mechanisms that tie El Niño–Southern Oscillation (ENSO)‐related equatorial Pacific SSTs to snowδ18O at 5,680 m in the Andes have not been fully established. We use a proxy system model to simulate how QIC snowδ18O varies by ENSO phase. The model accurately simulates higher and lowerδ18O values during El Niño and La Niña, respectively. We then explore the relative roles of ENSO forcing on different components of the forward model: (i) the seasonality and amount of snow gain and loss at the QIC, (ii) the initial water vaporδ18O values, and (iii) regional temperature. Most (more than two thirds) of the ENSO‐related variability in the QICδ18O can be accounted for by ENSO's influence on South American summer monsoon (SASM) activity and the resulting change in the initial water vapor isotopic composition. The initial water vaporδ18O values are affected by the strength of upstream convection associated with the SASM. Since convection over the Amazon is enhanced during La Niña, the water vapor over the western Amazon Basin—which serves as moisture source for snowfall on QIC—is characterized by more negativeδ18O values. In the forward model, higher initial water vaporδ‐values during El Niño yield higher snowδ18O at the QIC. Our results clarify that the ENSO‐related isotope signal on Quelccaya should not be interpreted as a simple temperature response.

     
    more » « less
  2. Abstract

    Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon.

    Significance Statement

    We want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future.

     
    more » « less
  3. Abstract. Given the short span of instrumental precipitationrecords in the South American Altiplano, longer-term hydroclimatic recordsare needed to understand the nature of climate variability and to improvethe predictability of precipitation, a key natural resource for thesocioeconomic development in the Altiplano and adjacent arid lowlands. Inthis region grows Polylepis tarapacana, a long-lived tree species that is very sensitive tohydroclimatic changes and has been widely used for tree-ring studies in thecentral and southern Altiplano. However, in the northern sector of thePeruvian and Chilean Altiplano (16–19∘ S)still exists a gap of high-resolution hydroclimatic data based on tree-ringrecords. Our study provides an overview of the temporal evolution of thelate-spring–mid-summer precipitation for the period 1625–2013 CE at thenorthern South American Altiplano, allowing for the identification of wet ordry periods based on a regional reconstruction from three P. tarapacana chronologies. Anincrease in the occurrence of extreme dry events, together with a decreasingtrend in the reconstructed precipitation, has been recorded since the 1970sin the northern Altiplano within the context of the last ∼4 centuries. The average precipitation over the last 17 years stands outas the driest in our 389-year reconstruction. We reveal a temporal andspatial synchrony across the Altiplano region of dry conditions since themid-1970s. Independent tree-ring-based hydroclimate reconstructions andseveral paleoclimatic records based on other proxies available for thetropical Andes record this synchrony. The influence of El Niño–SouthernOscillation (ENSO) on the northern Altiplano precipitation was detected byour rainfall reconstruction that showed past drier conditions in our studyregion associated with ENSO warm events. The spectral properties of therainfall reconstruction showed strong imprints of ENSO variability atdecadal, sub-decadal, and inter-annual timescales, in particular from thePacific NIÑO 3 sector. Overall, the recent reduction in precipitation incomparison with previous centuries, the increase in extreme dry events andthe coupling between precipitation and ENSO variability reported by thiswork is essential information in the context of the growing demand for waterresources in the Altiplano. This study will contribute to a betterunderstanding of the vulnerability and resilience of the region to theprojected evapotranspiration increase for the 21st century associated withglobal warming. 
    more » « less
  4. The tropical Andes of southern Peru and northern Bolivia have several major mountain summits suitable for ice core paleoclimatic investigations. However, incomplete understanding of the controls on the isotopic ( δD, δ18O) composition of precipitation and a paucity of field observations in this region continue to limit ice-core-based paleoclimate reconstructions. This study examines four years of daily observations of δD and δ18O in precipitation from a citizen scientist network on the northeastern margin of the Altiplano, to identify controls on the subseasonal spatiotemporal variability in δ18O during the wet season (November–April). These data provide new insights into modern δ18O variability at high spatial and temporal scales. We identify a regionally coherent subseasonal signal in precipitation δ18O featuring alternating periods of high and low δ18O of 9–27-day duration. This signal reflects variability in precipitation delivery driven by synoptic conditions and closely relates to variations in the strength of the South American low-level jet and moisture availability over the study area. The annual layer of snowpack on the Quelccaya Ice Cap observed in the subsequent dry season retains this subseasonal signal, allowing the development of a snow-pit age model based on precipitation δ18O measurements, and demonstrating how synoptic variability is transmitted from the atmosphere to mountaintop snowpacks along the Altiplano’s eastern margin. This result improves our understanding of the hydrometeorological processes governing δ18O and δD in tropical Andean precipitation and has implications for improving paleoclimate reconstructions from tropical Andean ice cores and other paleoclimate records.

     
    more » « less
  5. Abstract

    The El Niño‐Southern Oscillation (ENSO) is a natural climate phenomenon that alters the biogeochemical and physical dynamics of the Eastern Tropical Pacific Ocean. Its two phases, El Niño and La Niña, are characterized by decreased and increased coastal upwelling, respectively, which have cascading effects on primary productivity, organic matter supply, and ocean‐atmosphere interactions. The Eastern Tropical South Pacific oxygen minimum zone is a source of nitrous oxide (N2O), a potent greenhouse gas, to the atmosphere. Here, we present the first study to directly compare N2O sources during opposing ENSO phases using N2O isotopocule analyses. Our data show that during La Niña, N2O accumulation increased six‐fold in the upper 100 m of the water column, and N2O fluxes to the atmosphere increased up to 20‐fold. N2O isotopocule data demonstrated substantial increases in δ18O up to 60.5‰ and decreases in δ15Nβdown to −10.3‰ in the oxycline, signaling a shift in N2O cycling during La Niña compared to El Niño. During El Niño, N2O production was primarily due to ammonia‐oxidizing archaea, whereas during La Niña, N2O production by incomplete denitrification supplemented that from ammonia‐oxidation, with N2O consumption likely maintaining the high site preference values (up to 26.7‰). Ultimately, our results illustrate a strong connection between upwelling intensity, biogeochemistry, and N2O flux to the atmosphere. Additionally, they highlight the combined power of N2O isotopocule analysis and repeat measurements in the same region to constrain N2O interannual variability and cycling dynamics under different climate scenarios.

     
    more » « less