skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: Parameters of the adhesive setae and setal fields of the Jamaican radiation of anoles (Dactyloidae: Anolis ): potential for ecomorphology at the microscopic scale
Abstract

The subdigital adhesive pads of Caribbean Anolis lizards are considered to be a key innovation that permits occupation of novel ecological niches. Although previous work has demonstrated that subdigital pad morphology and performance vary with habitat use, such investigations have only considered the macroscale aspects of these structures (e.g. pad area). The morphological agents of attachment, however, are arrays of hair-like fibres (setae) that terminate in an expanded tip (spatula) and have not been examined in a similar manner. Here we examine the setal morphology and setal field configuration of ecologically distinct species of the monophyletic Jamaican Anolis radiation from a functional and ecological perspective. We find that anoles occupying the highest perches possess greater setal densities and smaller spatulae than those exploiting lower perches. This finding is consistent with the concept of contact splitting, whereby subdivision of an adhesive area into smaller and more densely packed fibres results in an increase in adhesive performance. Micromorphological evidence also suggests that the biomechanics of adhesive locomotion may vary between Anolis ecomorphs. Our findings indicate that, in a similar fashion to macroscale features of the subdigital pad, its microstructure may vary in relation to performance and habitat use in Caribbean Anolis.

 
more » « less
NSF-PAR ID:
10369921
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biological Journal of the Linnean Society
Volume:
137
Issue:
1
ISSN:
0024-4066
Page Range / eLocation ID:
p. 85-99
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The remarkable ability of geckos to adhere to a wide-variety of surfaces has served as an inspiration for hundreds of studies spanning the disciplines of biomechanics, functional morphology, ecology, evolution, materials science, chemistry, and physics. The multifunctional properties (e.g., self-cleaning, controlled releasability, reversibility) and adhesive performance of the gekkotan adhesive system have motivated researchers to design and fabricate gecko-inspired synthetic adhesives of various materials and properties. However, many challenges remain in our attempts to replicate the properties and performance of this complex, hierarchical fibrillar adhesive system, stemming from fundamental, but unanswered, questions about how fibrillar adhesion operates. Such questions involve the role of fibril morphology in adhesive performance and how the gekkotan adhesive apparatus is utilized in nature. Similar fibrillar adhesive systems have, however, evolved independently in two other lineages of lizards (anoles and skinks) and potentially provide alternate avenues for addressing these fundamental questions. Anoles are the most promising group because they have been the subject of intensive ecological and evolutionary study for several decades, are highly speciose, and indeed are advocated as squamate model organisms. Surprisingly, however, comparatively little is known about the morphology, performance, and properties of their convergently-evolved adhesive arrays. Although many researchers consider the performance of the adhesive system of Anolis lizards to be less accomplished than its gekkotan counterpart, we argue here that Anolis lizards are prime candidates for exploring the fundamentals of fibrillar adhesion. Studying the less complex morphology of the anoline adhesive system has the potential to enhance our understanding of fibril morphology and its relationship to the multifunctional performance of fibrillar adhesive systems. Furthermore, the abundance of existing data on the ecology and evolution of anoles provides an excellent framework for testing hypotheses about the influence of habitat microstructure on the performance, behavior, and evolution of lizards with subdigital adhesive pads.

     
    more » « less
  2. Synopsis

    Urbanization, despite its destructive effects on natural habitats, offers species an opportunity to colonize novel niches. Previous research found that urban Anolis lizards in Puerto Rico had increased adhesive toepad area and more ventral toepad scales, traits that are likely adaptive and genetically based. We further investigated these phenotypic changes using geometric morphometrics to measure differences in toe shape, toepad shape, and lamellar morphology. Our results indicate that the increased toepad area of urban Anolis cristatellus lizards in Puerto Rico is not simply an isometric increase in toe size. Toes of urban populations exhibit multiple disproportional changes compared to forest lizards, with a larger proportion of the toe length covered in adhesive toepad. In addition, the toepads of urban lizards increase more in length than width. Lastly, lizards in urban populations exhibit both increased number of lamellae as well as increased spacing between individual lamellae. We also observed regional variation, with urban specimens having significantly more disparity, suggesting similar processes of urban adaptation are likely happening in parallel across the island, yet with region-specific idiosyncrasies, possibly generating more variation in toepad morphology across urban specimens as compared to forest specimens. Considering the use of geometric morphometrics, we found that specimen preparation, specifically how flat and straight toes are during imaging, to be an important factor affecting our data, more so than specimen size or any other meaningful morphological variation. In addition, we found that landmark and semilandmark data can be used to directly estimate toepad area, offering the opportunity to streamline future studies. In conclusion, our results highlight the value of considering toepad morphology in more detail beyond adhesive pad area or number of lamellae. Geometric morphometrics tools may be employed to elucidate subtle differences in shape to better allow researchers to connect changes in morphology to ecology and adhesive performance.

     
    more » « less
  3. Abstract How developmental modifications produce key innovations, which subsequently allow for rapid diversification of a clade into new adaptive zones, has received much attention. However, few studies have used a robust comparative framework to investigate the influence of evolutionary and developmental constraints on the origin of key innovations, such as the adhesive toe pad of lizards. Adhesive toe pads evolved independently at least 16 times in lizards, allowing us to examine whether the patterns observed are general evolutionary phenomena or unique, lineage-specific events. We performed a high-resolution comparison of plantar scale development in 14 lizard species in Anolis and geckos, encompassing five independent origins of toe pads (one in Anolis, four in geckos). Despite substantial evolutionary divergence between Anolis and geckos, we find that these clades have undergone similar developmental modifications to generate their adhesive toe pads. Relative to the ancestral plantar scale development, in which scale ridges form synchronously along the digit, both padded geckos and Anolis exhibit scansor formation in a distal-to-proximal direction. Both clades have undergone developmental repatterning and, following their origin, modifications in toe pad morphology occurred through relatively minor developmental modifications, suggesting that developmental constraints governed the diversification of the adhesive toe pad in lizards. 
    more » « less
  4. Bumble bees are characterized by their thick setal pile that imparts aposematic color patterns often used for species-level identification. Like all bees, the single-celled setae of bumble bees are branched, an innovation thought important for pollen collection. To date no studies have quantified the types of setal morphologies and their distribution on these bees, information that can facilitate understanding of their adaptive ecological function. This study defines several major setal morphotypes in the common eastern bumble bee Bombus impatiens Cresson, revealing these setal types differ by location across the body. The positions of these types of setae are similar across individuals, castes, and sexes within species. We analyzed the distribution of the two most common setal types (plumose and spinulate) across the body dorsum of half of the described bumble bee species. This revealed consistently high density of plumose (long-branched) setae across bumble bees on the head and mesosoma, but considerable variation in the amount of metasomal plumosity. Variation on the metasoma shows strong phylogenetic signal at subgeneric and smaller group levels, making it a useful trait for species delimitation research, and plumosity has increased from early Bombus ancestors. The distribution of these setal types suggests these setae may serve several functions, including pollen-collecting and thermoregulatory roles, and probable mechanosensory functions. This study further examines how and when setae of the pile develop, evidence for mechanosensory function, and the timing of pigmentation as a foundation for future genetic and developmental research in these bees. 
    more » « less
  5. Synopsis

    Adhesive toe pads have evolved numerous times over lizard evolutionary history, most notably in geckos. Despite significant variation in adult toe pad morphology across independent origins of toe pads, early developmental patterns of toe pad morphogenesis are similar among distantly related species. In these distant phylogenetic comparisons, toe pad variation is achieved during the later stages of development. We aimed to understand how toe pad variation is generated among species sharing a single evolutionary origin of toe pads (house geckos—Hemidactylus). We investigated toe pad functional variation and developmental patterns in three species of Hemidactylus, ranging from highly scansorial (H. platyurus), to less scansorial (H. turcicus), to fully terrestrial (H. imbricatus). We found that H. platyurus generated significantly greater frictional adhesive force and exhibited much larger toe pad area relative to the other two species. Furthermore, differences in the offset of toe pad extension phase during embryonic development results in the variable morphologies seen in adults. Taken together, we demonstrate how morphological variation is generated in a complex structure during development and how that variation relates in important functional outcomes.

     
    more » « less