Abstract Four statistical selection methods for inferring transcription factor (TF)–target gene (TG) pairs were developed by coupling mean squared error (MSE) or Huber loss function, with elastic net (ENET) or least absolute shrinkage and selection operator (Lasso) penalty. Two methods were also developed for inferring pathway gene regulatory networks (GRNs) by combining Huber or MSE loss function with a network (Net)-based penalty. To solve these regressions, we ameliorated an accelerated proximal gradient descent (APGD) algorithm to optimize parameter selection processes, resulting in an equally effective but much faster algorithm than the commonly used convex optimization solver. The synthetic data generated in a general setting was used to test four TF–TG identification methods, ENET-based methods performed better than Lasso-based methods. Synthetic data generated from two network settings was used to test Huber-Net and MSE-Net, which outperformed all other methods. The TF–TG identification methods were also tested with SND1 and gl3 overexpression transcriptomic data, Huber-ENET and MSE-ENET outperformed all other methods when genome-wide predictions were performed. The TF–TG identification methods fill the gap of lacking a method for genome-wide TG prediction of a TF, and potential for validating ChIP/DAP-seq results, while the two Net-based methods are instrumental for predicting pathway GRNs.
more »
« less
Identifying transcription factor–DNA interactions using machine learning
Abstract Machine learning approaches have been applied to identify transcription factor (TF)–DNA interaction important for gene regulation and expression. However, due to the enormous search space of the genome, it is challenging to build models capable of surveying entire reference genomes, especially in species where models were not trained. In this study, we surveyed a variety of methods for classification of epigenomics data in an attempt to improve the detection for 12 members of the auxin response factor (ARF)-binding DNAs from maize and soybean as assessed by DNA Affinity Purification and sequencing (DAP-seq). We used the classification for prediction by minimizing the genome search space by only surveying unmethylated regions (UMRs). For identification of DAP-seq-binding events within the UMRs, we achieved 78.72 % accuracy rate across 12 members of ARFs of maize on average by encoding DNA with count vectorization for k-mer with a logistic regression classifier with up-sampling and feature selection. Importantly, feature selection helps to uncover known and potentially novel ARF-binding motifs. This demonstrates an independent method for identification of TF-binding sites. Finally, we tested the model built with maize DAP-seq data and applied it directly to the soybean genome and found high false-negative rates, which accounted for more than 40 % across the ARF TFs tested. The findings in this study suggest the potential use of various methods to predict TF–DNA interactions within and between species with varying degrees of success.
more »
« less
- Award ID(s):
- 2026554
- PAR ID:
- 10369987
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- in silico Plants
- Volume:
- 4
- Issue:
- 2
- ISSN:
- 2517-5025
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
SUMMARY The stilbenoid pathway is responsible for the production of resveratrol in grapevine (Vitis viniferaL.). A few transcription factors (TFs) have been identified as regulators of this pathway but the extent of this control has not been deeply studied. Here we show how DNA affinity purification sequencing (DAP‐Seq) allows for the genome‐wide TF‐binding site interrogation in grape. We obtained 5190 and 4443 binding events assigned to 4041 and 3626 genes for MYB14 and MYB15, respectively (approximately 40% of peaks located within −10 kb of transcription start sites). DAP‐Seq of MYB14/MYB15 was combined with aggregate gene co‐expression networks (GCNs) built from more than 1400 transcriptomic datasets from leaves, fruits, and flowers to narrow down bound genes to a set of high confidence targets. The analysis of MYB14, MYB15, and MYB13, a third uncharacterized member of Subgroup 2 (S2), showed that in addition to the few previously known stilbene synthase (STS) targets, these regulators bind to 30 of 47STSfamily genes. Moreover, all three MYBs bind to severalPAL,C4H, and4CLgenes, in addition to shikimate pathway genes, theWRKY03stilbenoid co‐regulator and resveratrol‐modifying gene candidates among which ROMT2‐3 were validated enzymatically. A high proportion of DAP‐Seq bound genes were induced in the activated transcriptomes of transientMYB15‐overexpressing grapevine leaves, validating our methodological approach for delimiting TF targets. Overall, Subgroup 2 R2R3‐MYBs appear to play a key role in binding and directly regulating several primary and secondary metabolic steps leading to an increased flux towards stilbenoid production. The integration of DAP‐Seq and reciprocal GCNs offers a rapid framework for gene function characterization using genome‐wide approaches in the context of non‐model plant species and stands up as a valid first approach for identifying gene regulatory networks of specialized metabolism.more » « less
-
null (Ed.)Characterizing genome-wide binding profiles of transcription factors (TFs) is essential for understanding biological processes. Although techniques have been developed to assess binding profiles within a population of cells, determining them at a single-cell level remains elusive. Here, we report scFAN (single-cell factor analysis network), a deep learning model that predicts genome-wide TF binding profiles in individual cells. scFAN is pretrained on genome-wide bulk assay for transposase-accessible chromatin sequencing (ATAC-seq), DNA sequence, and chromatin immunoprecipitation sequencing (ChIP-seq) data and uses single-cell ATAC-seq to predict TF binding in individual cells. We demonstrate the efficacy of scFAN by both studying sequence motifs enriched within predicted binding peaks and using predicted TFs for discovering cell types. We develop a new metric “TF activity score” to characterize each cell and show that activity scores can reliably capture cell identities. scFAN allows us to discover and study cellular identities and heterogeneity based on chromatin accessibility profiles.more » « less
-
Abstract DNA–transcription factor (TF) interactions are essential for gene regulation. Fully characterizing TF recognition specificities and identifying their genomic binding targets are important to understand TF function and regulatory networks. Recently, high-throughput sequencing technology HT-SELEX (high-throughput systematic evolution of ligands by exponential enrichment) has been used to measure hundreds of TFs, providing massive datasets that comprise TF binding preferences. However, there is a need to develop comprehensive computational modeling to fully extract and characterize critical TF binding preferences and fail to distinguish genome-wide binding targets. In this study, we developed a global pairwise model called DCA-Scapes trained with experimental HT-SELEX data. Our approach uncovered high-resolution TF recognition specificity landscapes, enabled the prediction of in vivo binding sequences, and was validated with ChIP-seq (ChIP sequencing) data. In addition, the DCA-Scapes model was utilized to refine the locations of binding regions and accurately identify the binding sites within the ChIP-seq enriched peaks. Moreover, we extended our model to cover the entire human genome, uncovering potential TF target sites that exhibit tissue-specific TF recognition across various cellular environments.more » « less
-
Abstract Accessible chromatin and unmethylated DNA are associated with many genes and cis-regulatory elements. Attempts to understand natural variation for accessible chromatin regions (ACRs) and unmethylated regions (UMRs) often rely upon alignments to a single reference genome. This limits the ability to assess regions that are absent in the reference genome assembly and monitor how nearby structural variants influence variation in chromatin state. In this study, de novo genome assemblies for four maize inbreds (B73, Mo17, Oh43, and W22) are utilized to assess chromatin accessibility and DNA methylation patterns in a pan-genome context. A more complete set of UMRs and ACRs can be identified when chromatin data are aligned to the matched genome rather than a single reference genome. While there are UMRs and ACRs present within genomic regions that are not shared between genotypes, these features are 6- to 12-fold enriched within regions between genomes. Characterization of UMRs present within shared genomic regions reveals that most UMRs maintain the unmethylated state in other genotypes with only ∼5% being polymorphic between genotypes. However, the majority (71%) of UMRs that are shared between genotypes only exhibit partial overlaps suggesting that the boundaries between methylated and unmethylated DNA are dynamic. This instability is not solely due to sequence variation as these partially overlapping UMRs are frequently found within genomic regions that lack sequence variation. The ability to compare chromatin properties among individuals with structural variation enables pan-epigenome analyses to study the sources of variation for accessible chromatin and unmethylated DNA.more » « less
An official website of the United States government
