skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.

Title: The Importance of the Macroscopic Geometry in Gas‐Phase Photocatalysis

Photocatalysis has the potential to make a major technological contribution to solving pressing environmental and energy problems. There are many strategies for improving photocatalysts, such as tuning the composition to optimize visible light absorption, charge separation, and surface chemistry, ensuring high crystallinity, and controlling particle size and shape to increase overall surface area and exploit the reactivity of individual crystal facets. These processes mainly affect the nanoscale and are therefore summarized as nanostructuring. In comparison, microstructuring is performed on a larger size scale and is mainly concerned with particle assembly and thin film preparation. Interestingly, most structuring efforts stop at this point, and there are very few examples of geometry optimization on a millimeter or even centimeter scale. However, the recent work on nanoparticle‐based aerogel monoliths has shown that this size range also offers great potential for improving the photocatalytic performance of materials, especially when the macroscopic geometry of the monolith is matched to the design of the photoreactor. This review article is dedicated to this aspect and addresses some issues and open questions that arise when working with macroscopically large photocatalysts. Guidelines are provided that could help develop novel and efficient photocatalysts with a truly 3D architecture.

more » « less
Author(s) / Creator(s):
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Most small asteroids are defined as “rubble piles” or bodies with zero tensile strength and large bulk porosity. The cohesive forces that hold them together act at the grain scale, and their magnitude is often estimated from similar materials when used in simulations. Improving the accuracy of predictions of asteroid strengths requires suitable laboratory measurements of relevant materials, as well as increasing the availability of materials from sample return. Atomic force microscopy (AFM) is well suited for force measurements relative to particle–particle interactions. In this work, we use AFM force measurements to evaluate the cohesive forces that act between micron-sized grains. We investigate the effect of the sizes of the interacting grains of JSC-1 lunar simulant using three sample sizes (<45, 75–125, and 125–250μm) and three spherical AFM tip diameters (2μm, 15μm, and 45μm). In all cases, adhesion forces were larger at ambient relative humidity (RH), where the water layer on the surface of the grains is more prominent, creating a larger meniscus between the tip and the grain upon contact. We observed weaker adhesion with larger grain/tip size, which can be attributed to the changing contact area between the samples and the tips. We expect that our approach will pave the way to a better understanding of regolith surface properties such as adhesion and cohesion and provide suitable input for models that can be used to predict the evolution of asteroids and their particle behaviors.

    more » « less
  2. Abstract

    Coupling photocatalyst-coated optical fibers (P-OFs) with LEDs shows potential in environmental applications. Here we report a strategy to maximize P-OF light usage and quantify interactions between two forms of light energy (refracted light and evanescent waves) and surface-coated photocatalysts. Different TiO2-coated quartz optical fibers (TiO2-QOFs) are synthesized and characterized. An energy balance model is then developed by correlating different nano-size TiO2coating structures with light propagation modes in TiO2-QOFs. By reducing TiO2patchiness on optical fibers to 0.034 cm2/cm2and increasing the average interspace distance between fiber surfaces and TiO2coating layers to 114.3 nm, refraction is largely reduced when light is launched into TiO2-QOFs, and 91% of light propagated on the fiber surface is evanescent waves. 24% of the generated evanescent waves are not absorbed by nano-TiO2and returned to optical fibers, thus increasing the quantum yield during degradation of a refractory pollutant (carbamazepine) in water by 32%. Our model also predicts that extending the TiO2-QOF length could fully use the returned light to double the carbamazepine degradation and quantum yield. Therefore, maximizing evanescent waves to activate photocatalysts by controlling photocatalyst coating structures emerges as an effective strategy to improve light usage in photocatalysis.

    more » « less
  3. Abstract

    Dispersing inorganic colloidal nanoparticles within nematic liquid crystals provides a versatile platform both for forming new soft matter phases and for predefining physical behavior through mesoscale molecular‐colloidal self‐organization. However, owing to formation of particle‐induced singular defects and complex elasticity‐mediated interactions, this approach has been implemented mainly just for colloidal nanorods and nanoplatelets, limiting its potential technological utility. Here, orientationally ordered nematic colloidal dispersions are reported of pentagonal gold bipyramids that exhibit narrow but controlled polarization‐dependent surface plasmon resonance spectra and facile electric switching. Bipyramids tend to orient with their C5rotation symmetry axes along the nematic director, exhibiting spatially homogeneous density within aligned samples. Topological solitons, like heliknotons, allow for spatial reorganization of these nanoparticles according to elastic free energy density within their micrometer‐scale structures. With the nanoparticle orientations slaved to the nematic director and being switched by low voltages ≈1 V within a fraction of a second, these plasmonic composite materials are of interest for technological uses like color filters and plasmonic polarizers, as well as may lead to the development of unusual nematic phases, like pentatic liquid crystals.

    more » « less
  4. Abstract

    Liquid aerosols are ubiquitous in nature, and several tools exist to quantify their physicochemical properties. As a measurement science technique, electrochemistry has not played a large role in aerosol analysis because electrochemistry in air is rather difficult. Here, a remarkably simple method is demonstrated to capture and electroanalyze single liquid aerosol particles with radii on the order of single micrometers. An electrochemical cell is constructed by a microwire (cylindrical working electrode) traversing a film of ionic liquid (1‐butyl‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide) that is suspended within a wire loop (reference/counter electrode). An ionic liquid is chosen because the low vapor pressure preserves the film over weeks, vastly improving suspended film electroanalysis. The resultant high surface area allows the suspended ionic liquid cell to act as an aerosol net. Given the hydrophobic nature of the ionic liquid, aqueous aerosol particles do not coalesce into the film. When the liquid aerosols collide with the sufficiently biased microwire (creating a complex boundary: aerosol|wire|ionic liquid|air), the electrochemistry within a single liquid aerosol particle can be interrogated in real‐time. The ability to achieve liquid aerosol size distributions for aerosols over 1 µm in radius is demonstrated.

    more » « less
  5. Abstract

    Landmark‐based geometric morphometrics has emerged as an essential discipline for the quantitative analysis of size and shape in ecology and evolution. With the ever‐increasing density of digitized landmarks, the possible development of a fully automated method of landmark placement has attracted considerable attention. Despite the recent progress in image registration techniques, which could provide a pathway to automation, three‐dimensional (3D) morphometric data are still mainly gathered by trained experts. For the most part, the large infrastructure requirements necessary to perform image‐based registration, together with its system specificity and its overall speed, have prevented its wide dissemination.

    Here, we propose and implement a general and lightweight point cloud‐based approach to automatically collect high‐dimensional landmark data in 3D surfaces (Automated Landmarking through Point cloud Alignment and Correspondence Analysis). Our framework possesses several advantages compared with image‐based approaches. First, it presents comparable landmarking accuracy, despite relying on a single, random reference specimen and much sparser sampling of the structure's surface. Second, it can be efficiently run on consumer‐grade personal computers. Finally, it is general and can be applied at the intraspecific level to any biological structure of interest, regardless of whether anatomical atlases are available.

    Our validation procedures indicate that the method can recover intraspecific patterns of morphological variation that are largely comparable to those obtained by manual digitization, indicating that the use of an automated landmarking approach should not result in different conclusions regarding the nature of multivariate patterns of morphological variation.

    The proposed point cloud‐based approach has the potential to increase the scale and reproducibility of morphometrics research. To allow ALPACA to be used out‐of‐the‐box by users with no prior programming experience, we implemented it as a SlicerMorph module. SlicerMorph is an extension that enables geometric morphometrics data collection and 3D specimen analysis within the open‐source 3D Slicer biomedical visualization ecosystem. We expect that convenient access to this platform will make ALPACA broadly applicable within ecology and evolution.

    more » « less