skip to main content


Title: A Physarum-inspired approach to the Euclidean Steiner tree problem
Abstract

This paper presents a novel biologically-inspired explore-and-fuse approach to solving a large array of problems. The inspiration comes from Physarum, a unicellular slime mold capable of solving the traveling salesman and Steiner tree problems. Besides exhibiting individual intelligence,Physarumcan also share information with otherPhysarumorganisms through fusion. These characteristics of Physarum imply that spawning many such organisms we can explore the problem space in parallel, each individual gathering information and forming partial solutions pertaining to a local region of the problem space. When the organisms meet, they fuse and share information, eventually forming one organism which has a global view of the problem and can apply its intelligence to find an overall solution to the problem. This approach can be seen as a “softer” method of divide and conquer. We demonstrate this novel approach, developing thePhysarum Steiner Algorithmwhich is capable of finding feasible solutions to the Euclidean Steiner tree problem. This algorithm is of particular interest due to its resemblance toPhysarum polycephalum, ability to leverage parallel processing, avoid obstacles, and operate on various shapes and topological surfaces including the rectilinear grid.

 
more » « less
Award ID(s):
1749013 2152107
PAR ID:
10370092
Author(s) / Creator(s):
; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
12
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Physarum polycephalum is a unicellular slime mould that has been intensely studied owing to its ability to solve mazes, find shortest paths, generate Steiner trees, share knowledge and remember past events and the implied applications to unconventional computing. The CELL model is a cellular automaton introduced in Gunji et al . (Gunji et al. 2008 J. Theor. Biol. 253 , 659–667 ( doi:10.1016/j.jtbi.2008.04.017 )) that models Physarum ’s amoeboid motion, tentacle formation, maze solving and network creation. In the present paper, we extend the CELL model by spawning multiple CELLs, allowing us to understand the interactions between multiple cells and, in particular, their mobility, merge speed and cytoplasm mixing. We conclude the paper with some notes about applications of our work to modelling the rise of present-day civilization from the early nomadic humans and the spread of trends and information around the world. Our study of the interactions of this unicellular organism should further the understanding of how P. polycephalum communicates and shares information. 
    more » « less
  2. Given a graph G = (V, E) and a subset T ⊆ V of terminals, a Steiner tree of G is a tree that spans T. In the vertex-weighted Steiner tree (VST) problem, each vertex is assigned a non-negative weight, and the goal is to compute a minimum weight Steiner tree of G. Vertex-weighted problems have applications in network design and routing, where there are different costs for installing or maintaining facilities at different vertices. We study a natural generalization of the VST problem motivated by multi-level graph construction, the vertex-weighted grade-of-service Steiner tree problem (V-GSST), which can be stated as follows: given a graph G and terminals T, where each terminal v ∈ T requires a facility of a minimum grade of service R(v) ∈ {1, 2, . . . `}, compute a Steiner tree G0 by installing facilities on a subset of vertices, such that any two vertices requiring a certain grade of service are connected by a path in G 0 with the minimum grade of service or better. Facilities of higher grade are more costly than facilities of lower grade. Multi-level variants such as this one can be useful in network design problems where vertices may require facilities of varying priority. While similar problems have been studied in the edge-weighted case, they have not been studied as well in the more general vertex-weighted case. We first describe a simple heuristic for the V-GSST problem whose approximation ratio depends on `, the number of grades of service. We then generalize the greedy algorithm of [Klein & Ravi, 1995] to show that the V-GSST problem admits a (2 ln |T|)-approximation, where T is the set of terminals requiring some facility. This result is surprising, as it shows that the (seemingly harder) multi-grade problem can be approximated as well as the VST problem, and that the approximation ratio does not depend on the number of grades of service. Finally, we show that this problem is a special case of the directed Steiner tree problem and provide an integer linear programming (ILP) formulation for the V-GSST problem. 
    more » « less
  3. In the classical Steiner tree problem, given an undirected, connected graph G=(V,E) with non-negative edge costs and a set of terminals T⊆V, the objective is to find a minimum-cost tree E′⊆E that spans the terminals. The problem is APX-hard; the best known approximation algorithm has a ratio of ρ=ln(4)+ε<1.39. In this paper, we study a natural generalization, the multi-level Steiner tree (MLST) problem: given a nested sequence of terminals Tℓ⊂⋯⊂T1⊆V, compute nested trees Eℓ⊆⋯⊆E1⊆E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-Tier tree. Several approximation results are known. We first present two simple O(ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present various integer linear programming (ILP) formulations for the MLST problem, and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ=100 levels, which is sufficient for most applications such as network visualization or designing multi-level infrastructure. 
    more » « less
  4. null (Ed.)
    In the classical Steiner tree problem, given an undirected, connected graph G =( V , E ) with non-negative edge costs and a set of terminals T ⊆ V , the objective is to find a minimum-cost tree E &prime ⊆ E that spans the terminals. The problem is APX-hard; the best-known approximation algorithm has a ratio of ρ = ln (4)+ε < 1.39. In this article, we study a natural generalization, the multi-level Steiner tree (MLST) problem: Given a nested sequence of terminals T ℓ ⊂ … ⊂ T 1 ⊆ V , compute nested trees E ℓ ⊆ … ⊆ E 1 ⊆ E that span the corresponding terminal sets with minimum total cost. The MLST problem and variants thereof have been studied under various names, including Multi-level Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-tier tree. Several approximation results are known. We first present two simple O (ℓ)-approximation heuristics. Based on these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally on various instances of up to 500 vertices using three different network generation models. We also present several integer linear programming formulations for the MLST problem and compare their running times on these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to ℓ = 100 levels, which is sufficient for most applications, such as network visualization or designing multi-level infrastructure. 
    more » « less
  5. We consider the following general network design problem. The input is an asymmetric metric (V, c), root [Formula: see text], monotone submodular function [Formula: see text], and budget B. The goal is to find an r-rooted arborescence T of cost at most B that maximizes f(T). Our main result is a simple quasi-polynomial time [Formula: see text]-approximation algorithm for this problem, in which [Formula: see text] is the number of vertices in an optimal solution. As a consequence, we obtain an [Formula: see text]-approximation algorithm for directed (polymatroid) Steiner tree in quasi-polynomial time. We also extend our main result to a setting with additional length bounds at vertices, which leads to improved [Formula: see text]-approximation algorithms for the single-source buy-at-bulk and priority Steiner tree problems. For the usual directed Steiner tree problem, our result matches the best previous approximation ratio but improves significantly on the running time. For polymatroid Steiner tree and single-source buy-at-bulk, our result improves prior approximation ratios by a logarithmic factor. For directed priority Steiner tree, our result seems to be the first nontrivial approximation ratio. Under certain complexity assumptions, our approximation ratios are the best possible (up to constant factors). 
    more » « less