skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Minding the gap: socio-demographic factors linked to the perception of environmental pollution, water harvesting infrastructure, and gardening characteristics

With the ongoing need for water conservation, the American Southwest has worked to increase harvested rainwater efforts to meet municipal needs. Concomitantly, environmental pollution is prevalent, leading to concerns regarding the quality of harvested rainwater.Project Harvest, a co-created community science project, was initiated with communities that neighbor sources of pollution. To better understand how a participant’s socio-demographic factors affect home characteristics and rainwater harvesting infrastructure, pinpoint gardening practices, and determine participant perception of environmental pollution, a 145-question “Home Description Survey” was administered toProject Harvestparticipants (n = 167) by projectpromotoras(community health workers). Race/ethnicity and community were significantly associated (p < 0.05) with participant responses regarding proximity to potential sources of pollution, roof material, water harvesting device material, harvesting device capacity, harvesting device age, garden amendments, supplemental irrigation, and previous contaminant testing. Further, the study has illuminated the idiosyncratic differences in how underserved communities perceive environmental pollution and historical past land uses in their community. We propose that the collection of such data will inform the field on how to tailor environmental monitoring efforts and results for constituent use, how community members may alter activities to reduce environmental hazard exposure, and how future studies can be designed to meet the needs of environmentally disadvantaged communities.

more » « less
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Journal of Environmental Studies and Sciences
Page Range / eLocation ID:
p. 594-610
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Aim

    To assess the microbial water quality of harvested rainwater infrastructure used to supplement household water uses for homegrown produce.

    Methods and Results

    Using a co-created community science methodology, between 2017 and 2020, a total of 587 harvested rainwater samples and 147 garden soil samples irrigated with harvested rainwater were collected from four Arizona communities and analyzed for coliform, Escherichia coli, and/or Salmonella. Participants also completed a home description survey regarding their home and surrounding area, water harvesting infrastructure, and gardening habits.


    Chi-Square tests revealed that the quality of harvested rainwater is affected by proximity to a waste disposal or incineration facility, animal presence, cistern treatment, and cistern age (P < 0.05), while soil samples were associated with community (P < 0.05). Coliform and E. coli concentrations in both sample types were greater in the monsoon season.

    more » « less
  2. Abstract

    Social, political, and cultural complexities observed in environmental justice (EJ) communities require new forms of investigation, science teaching, and communication. Defined broadly, participatory approaches can challenge and change inequity and mistrust in science. Here, we describe Project Harvest and the partnership building and co‐generation of knowledge alongside four EJ communities in Arizona. From 2017 to 2021, Project Harvest centered learning around these communities and the participant experience drove the data sharing practice. The framework of sense‐making is used to analyze how community scientists (CS) are learning within the context of environmental pollution and (in)justice. The environmental health literacy (EHL) framework is applied to document the acquisition of skills that enable protective decision‐making and the capacity of CS to move along the EHL continuum. Using data from surveys, focus groups, and semi‐structured interviews, we are asking how did: (1) Personal connections and local relevancy fuel sense‐making? (2) Data sharing make pollution visible and connect to historical knowledge to either reinforce or modify their existing mental map around pollution? and (3) The co‐creation process build data literacy and a relationship science? Results indicate that due to the program framing, CS personally connected with, and made sense of their data based on use and experience. CS synthesized and connected their pollution history and lived experiences with their data and evaluated contaminant transport. CS saw themselves as part of the process, are taking what they learned and the evidence they helped produce to adopt protective environmental health measures and are applying these skills to new contexts. Here, co‐created science nurtured a new/renewed relationship with science. This science culture rooted in co‐creation, fosters action, trust, and supports ongoing science engagement. The science learning that stems from co‐created efforts can set the pace for social transformation and provide the foundation for structural change.

    more » « less
  3. Designing a Curriculum to Broaden Middle School Students’ Ideas and Interest in Engineering As the 21st century progresses, engineers will play critical roles in addressing complex societal problems such as climate change and nutrient pollution. Research has shown that more diverse teams lead to more creative and effective solutions (Smith-Doerr et al., 2017). However, while some progress has been made in increasing the number of women and people of color, 83% of employed engineers are male and 68% of engineers are white (NSF & NCSES, 2019). Traditional K–12 approaches to engineering often emphasize construction using a trial-and-error approach (ASEE, 2020). Although this approach may appeal to some students, it may alienate other students who then view engineering simply as “building things.” Designing engineering experiences that broaden students’ ideas about engineering, may help diversify the students entering the engineering pipeline. To this end, we developed Solving Community Problems with Engineering (SCoPE), an engineering curriculum that engages seventh-grade students in a three-week capstone project focusing on nutrient pollution in their local watershed. SCoPE engages students with the problem through local news articles about nutrient pollution and images of algae covered lakes, which then drives the investigation into the detrimental processes caused by excess nutrients entering bodies of water from sources such as fertilizer and wastewater. Students research the sources of nutrient pollution and potential solutions, and use simulations to investigate key variables and optimize the types of strategies for effectively decreasing and managing nutrient pollution to help develop their plans. Throughout the development process, we worked with a middle school STEM teacher to ensure the unit builds upon the science curriculum and the activities would be engaging and meaningful to students. The problem and location were chosen to illustrate that engineers can solve problems relevant to rural communities. Since people in rural locations tend to remain very connected to their communities throughout their lives, it is important to illustrate that engineering could be a relevant and viable career near home. The SCoPE curriculum was piloted with two teachers and 147 seventh grade students in a rural public school. Surveys and student drawings of engineers before and after implementation of the curriculum were used to characterize changes in students’ interest and beliefs about engineering. After completing the SCoPE curriculum, students’ ideas about engineers’ activities and the types of problems they solve were broadened. Students were 53% more likely to believe that engineers can protect the environment and 23% more likely to believe that they can identify problems in the community to solve (p < 0.001). When asked to draw an engineer, students were 1.3 times more likely to include nature/environment/agriculture (p < 0.01) and 3 times more likely to show engineers helping people in the community (p< 0.05) Additionally, while boys’ interest in science and engineering did not significantly change, girls’ interest in engineering and confidence in becoming an engineer significantly increased (Cohen’s D = 0.28, p<0.05). The SCoPE curriculum is available on PBS LearningMedia: This project was funded by NSF through the Division of Engineering Education and Centers, Research in the Formation of Engineers program #202076. References American Society for Engineering Education. (2020). Framework for P-12 Engineering Learning. Washington, DC. DOI: 10.18260/1-100-1153 National Science Foundation, National Center for Science and Engineering Statistics. (2019). Women, Minorities, and Persons with Disabilities in Science and Engineering: 2019. Special Report NSF 17-310. Arlington, VA. Smith-Doerr, L., Alegria, S., & Sacco, T. (2017). How Diversity Matters in the US Science and Engineering Workforce: A Critical Review Considering Integration in Teams, Fields, and Organizational Contexts, Engaging Science, Technology, and Society 3, 139-153. 
    more » « less
  4. Nicewonger, Todd E. ; McNair, Lisa D. ; Fritz, Stacey (Ed.) At the start of the pandemic, the editors of this annotated bibliography initiated a remote (i.e., largely virtual) ethnographic research project that investigated how COVID-19 was impacting off-site modular construction practices in Alaska Native communities. Many of these communities are located off the road system and thus face not only dramatically higher costs but multiple logistical challenges in securing licensed tradesmen and construction crews and in shipping building supplies and equipment to their communities. These barriers, as well as the region’s long winters and short building seasons, complicate the construction of homes and related infrastructure projects. Historically, these communities have also grappled with inadequate housing, including severe overcrowding and poor-quality building stock that is rarely designed for northern Alaska’s climate (Marino 2015). Moreover, state and federal bureaucracies and their associated funding opportunities often further complicate home building by failing to accommodate the digital divide in rural Alaska and the cultural values and practices of Native communities.[1] It is not surprising, then, that as we were conducting fieldwork for this project, we began hearing stories about these issues and about how the restrictions caused by the pandemic were further exacerbating them. Amidst these stories, we learned about how modular home construction was being imagined as a possible means for addressing both the complications caused by the pandemic and the need for housing in the region (McKinstry 2021). As a result, we began to investigate how modular construction practices were figuring into emergent responses to housing needs in Alaska communities. We soon realized that we needed to broaden our focus to capture a variety of prefabricated building methods that are often colloquially or idiomatically referred to as “modular.” This included a range of prefabricated building systems (e.g., manufactured, volumetric modular, system-built, and Quonset huts and other reused military buildings[2]). Our further questions about prefabricated housing in the region became the basis for this annotated bibliography. Thus, while this bibliography is one of multiple methods used to investigate these issues, it played a significant role in guiding our research and helped us bring together the diverse perspectives we were hearing from our interviews with building experts in the region and the wider debates that were circulating in the media and, to a lesser degree, in academia. The actual research for each of three sections was carried out by graduate students Lauren Criss-Carboy and Laura Supple.[3] They worked with us to identify source materials and their hard work led to the team identifying three themes that cover intersecting topics related to housing security in Alaska during the pandemic. The source materials collected in these sections can be used in a variety of ways depending on what readers are interested in exploring, including insights into debates on housing security in the region as the pandemic was unfolding (2021-2022). The bibliography can also be used as a tool for thinking about the relational aspects of these themes or the diversity of ways in which information on housing was circulating during the pandemic (and the implications that may have had on community well-being and preparedness). That said, this bibliography is not a comprehensive analysis. Instead, by bringing these three sections together with one another to provide a snapshot of what was happening at that time, it provides a critical jumping off point for scholars working on these issues. The first section focuses on how modular housing figured into pandemic responses to housing needs. In exploring this issue, author Laura Supple attends to both state and national perspectives as part of a broader effort to situate Alaska issues with modular housing in relation to wider national trends. This led to the identification of multiple kinds of literature, ranging from published articles to publicly circulated memos, blog posts, and presentations. These materials are important source materials that will likely fade in the vastness of the Internet and thus may help provide researchers with specific insights into how off-site modular construction was used – and perhaps hyped – to address pandemic concerns over housing, which in turn may raise wider questions about how networks, institutions, and historical experiences with modular construction are organized and positioned to respond to major societal disruptions like the pandemic. As Supple pointed out, most of the material identified in this review speaks to national issues and only a scattering of examples was identified that reflect on the Alaskan context. The second section gathers a diverse set of communications exploring housing security and homelessness in the region. The lack of adequate, healthy housing in remote Alaska communities, often referred to as Alaska’s housing crisis, is well-documented and preceded the pandemic (Guy 2020). As the pandemic unfolded, journalists and other writers reported on the immense stress that was placed on already taxed housing resources in these communities (Smith 2020; Lerner 2021). The resulting picture led the editors to describe in their work how housing security in the region exists along a spectrum that includes poor quality housing as well as various forms of houselessness including, particularly relevant for the context, “hidden homelessness” (Hope 2020; Rogers 2020). The term houseless is a revised notion of homelessness because it captures a richer array of both permanent and temporary forms of housing precarity that people may experience in a region (Christensen et al. 2107). By identifying sources that reflect on the multiple forms of housing insecurity that people were facing, this section highlights the forms of disparity that complicated pandemic responses. Moreover, this section underscores ingenuity (Graham 2019; Smith 2020; Jason and Fashant 2021) that people on the ground used to address the needs of their communities. The third section provides a snapshot from the first year of the pandemic into how CARES Act funds were allocated to Native Alaska communities and used to address housing security. This subject was extremely complicated in Alaska due to the existence of for-profit Alaska Native Corporations and disputes over eligibility for the funds impacted disbursements nationwide. The resources in this section cover that dispute, impacts of the pandemic on housing security, and efforts to use the funds for housing as well as barriers Alaska communities faced trying to secure and use the funds. In summary, this annotated bibliography provides an overview of what was happening, in real time, during the pandemic around a specific topic: housing security in largely remote Alaska Native communities. The media used by housing specialists to communicate the issues discussed here are diverse, ranging from news reports to podcasts and from blogs to journal articles. This diversity speaks to the multiple ways in which information was circulating on housing at a time when the nightly news and radio broadcasts focused heavily on national and state health updates and policy developments. Finding these materials took time, and we share them here because they illustrate why attention to housing security issues is critical for addressing crises like the pandemic. For instance, one theme that emerged out of a recent National Science Foundation workshop on COVID research in the North NSF Conference[4] was that Indigenous communities are not only recovering from the pandemic but also evaluating lessons learned to better prepare for the next one, and resilience will depend significantly on more—and more adaptable—infrastructure and greater housing security. 
    more » « less
  5. An initial exploratory study examined basic parameters of the sustainability mindset in an historically underrepresented group within engineering. An NSF water quality engineering research project engaged citizen scientists from vulnerable Latinx families in design, construction, and use of acrylic concrete structures for rainwater harvesting. During the start, middle, and end of the project, participants were asked to share their perceptions of sustainability through a series of exploratory focus groups questions: “How do you feel about droughts in the region; can you please tell me what you know about drought-resiliency; do you know ways a person might be able to conserve water during a drought; can you please tell me what you know about water quality testing?” Three coders (an environmental engineer, a civil engineer, and a sociologist) conducted a domain analysis of the focus group to determine emergent themes reflecting the sustainability mindset of the citizen scientists. Preliminary results show that between the onset and conclusion of the rainwater harvesting project, participants increasingly articulated their thoughts on sustainability in a future-oriented context requiring collective action in a broader, community sense. The preliminary findings have implications for sustainability- focused engineering outreach and crowdsourcing efforts. 
    more » « less