skip to main content


Title: Resonance broadening effect for relativistic electron interaction with electromagnetic ion cyclotron waves

Relativistic electron scattering by electromagnetic ion cyclotron (EMIC) waves is one of the most effective mechanisms for >1 MeV electron flux depletion in the Earth's radiation belts. Resonant electron interaction with EMIC waves is traditionally described by quasi-linear diffusion equations, although spacecraft observations often report EMIC waves with intensities sufficiently large to trigger nonlinear resonant interaction with electrons. An important consequence of such nonlinear interaction is the resonance broadening effect due to high wave amplitudes. In this study, we quantify this resonance broadening effect in electron pitch-angle diffusion rates. We show that resonance broadening can significantly increase the pitch-angle range of EMIC-scattered electrons. This increase is especially important for ∼1 MeV electrons, where, without the resonance broadening, only those near the loss cone (with low fluxes) can resonate with EMIC waves.

 
more » « less
Award ID(s):
2329897
NSF-PAR ID:
10370134
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Physics of Plasmas
Volume:
29
Issue:
8
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

     
    more » « less
  2. Abstract

    Relativistic electron losses in Earth's radiation belts are usually attributed to electron resonant scattering by electromagnetic waves. One of the most important wave modes for such scattering is the electromagnetic ion cyclotron (EMIC) mode. Within the quasi‐linear diffusion framework, the cyclotron resonance of relativistic electrons with EMIC waves results in very fast electron precipitation to the atmosphere. However, wave intensities often exceed the threshold for nonlinear resonant interaction, and such intense EMIC waves have been shown to transport electrons away from the loss cone due to theforce bunchingeffect. In this study we investigate if this transport can block electron precipitation. We combine test particle simulations, low‐altitude observations of EMIC‐driven electron precipitation by the Electron Losses and Fields Investigations mission, and ground‐based EMIC observations. Comparing simulations and observations, we show that, despite the low pitch‐angle electrons being transported away from the loss cone, the scattering at higher pitch angles results in the loss cone filling and electron precipitation.

     
    more » « less
  3. Abstract

    Energetic electron losses in the Earth's inner magnetosphere are dominated by outward radial diffusion and scattering into the atmosphere by various electromagnetic waves. The two most important wave modes responsible for electron scattering are electromagnetic ion cyclotron (EMIC) waves and whistler‐mode waves (whistler waves) that, acting together, can provide rapid electron losses over a wide energy range from few keV to few MeV. Wave‐particle resonant interaction resulting in electron scattering is well described by quasi‐linear diffusion theory using the cold plasma dispersion, whereas the effects of nonlinear resonances and hot plasma dispersion are less well understood. This study aims to examine these effects and estimate their significance for a particular event during which both wave modes are quasi‐periodically modulated by ultra‐low‐frequency (ULF) compressional waves. Such modulation of EMIC and whistler wave amplitudes provides a unique opportunity to compare nonlinear resonant scattering (important for the most intense waves) with quasi‐linear diffusion (dominant for low‐intensity waves). The same modulation of plasma properties allows better characterization of hot plasma effects on the EMIC wave dispersion. Although hot plasma effects significantly increase the minimum resonant energy,Emin, for the most intense EMIC waves, such effects become negligible for the higher frequency part of the hydrogen‐band EMIC wave spectrum. Nonlinear phase trapping of 300–500 keV electrons through resonances with whistler waves may accelerate and make them resonant with EMIC waves that, in turn, quickly scatter those electrons into the loss‐cone. Our results highlight the importance of nonlinear effects for simulations of energetic electron fluxes in the inner magnetosphere.

     
    more » « less
  4. Abstract

    Electromagnetic ion cyclotron (EMIC) waves have long been considered to be a significant loss mechanism for relativistic electrons. This has most often been attributed to resonant interactions with the highest amplitude waves. But recent observations have suggested that the dominant energy of electrons precipitated to the atmosphere may often be relatively low, less than 1 MeV, whereas the minimum resonant energy of the highest amplitude waves is often greater than 2 MeV. Here we use relativistic electron test particle simulations in the wavefields of a hybrid code simulation of EMIC waves in dipole geometry in order to show that significant pitch angle scattering can occur due to interaction with low‐amplitude short‐wavelength EMIC waves. In the case we examined, these waves are in the H band (at frequencies above the He+gyrofrequency), even though the highest amplitude waves were in the He band frequency range (below the He+gyrofrequency). We also present wave power distributions for 29 EMIC simulations in straight magnetic field line geometry that show that the high wave number portion of the spectrum is in every case mostly due to the H band waves. Though He band waves are often associated with relativistic electron precipitation, it is possible that the He band waves do not directly scatter the sub‐megaelectron volts (sub‐MeV) electrons, but that the presence of He band waves is associated with high plasma density which lowers the minimum resonant energy so that these electrons can more easily resonate with the H band waves.

     
    more » « less
  5. Abstract

    Resonant interactions between relativistic electrons and electromagnetic ion cyclotron (EMIC) waves provide an effective loss mechanism for this important electron population in the outer radiation belt. The diffusive regime of electron scattering and loss has been well incorporated into radiation belt models within the framework of the quasi‐linear diffusion theory, whereas the nonlinear regime has been mostly studied with test particle simulations. There is also a less investigated, nonresonant regime of electron scattering by EMIC waves. All three regimes should be present, depending on the EMIC waves and ambient plasma properties, but the occurrence rates of these regimes have not been previously quantified. This study provides a statistical investigation of the most important EMIC wave‐packet characteristics for the diffusive, nonlinear, and nonresonant regimes of electron scattering. We utilize 3 years of observations to derive distributions of wave amplitudes, wave‐packet sizes, and rates of frequency variations within individual wave‐packets. We demonstrate that EMIC waves typically propagate as wave‐packets with ∼10 wave periods each, and that ∼3–10% of such wave‐packets can reach the regime of nonlinear resonant interaction with 2–6 MeV electrons. We show that EMIC frequency variations within wave‐packets reach 50–100% of the center frequency, corresponding to a significant high‐frequency tail in their wave power spectrum. We explore the consequences of these wave‐packet characteristics for high and low energy electron precipitation by H‐band EMIC waves and for the relative importance of quasi‐linear and nonlinear regimes of wave‐particle interactions.

     
    more » « less