skip to main content


Title: Modulation of Boundary-Layer Stability and the Surface Energy Budget by a Local Flow in Central Alaska
Abstract

The pre-ALPACA (Alaskan Layered Pollution And Chemical Analysis) 2019 winter campaign took place in Fairbanks, Alaska, in November–December 2019. One objective of the campaign was to study the life-cycle of surface-based temperature inversions and the associated surface energy budget changes. Several instruments, including a 4-component radiometer and sonic anemometer were deployed in the open, snow-covered University of Alaska Fairbanks (UAF) Campus Agricultural Field. A local flow from a connecting valley occurs at this site. This flow is characterized by locally elevated wind speeds (greater than 3 m s$$^{-1}$$-1) under clear-sky conditions and a north-westerly direction. It is notably different to the wind observed at the airport more than 3.5 km to the south-west. The surface energy budget at the UAF Field site exhibits two preferential modes. In the first mode, turbulent sensible heat and net longwave fluxes are close to 0 W m$$^{-2}$$-2, linked to the presence of clouds and generally low winds. In the second, the net longwave flux is around − 50 W m$$^{-2}$$-2and the turbulent sensible heat flux is around 15 W m$$^{-2}$$-2, linked to clear skies and elevated wind speeds. The development of surface-based temperature inversions at the field is hindered compared to the airport because the local flow sustains vertical mixing. In this second mode the residual of the surface energy budget is large, possibly due to horizontal temperature advection.

 
more » « less
NSF-PAR ID:
10370136
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Boundary-Layer Meteorology
Volume:
185
Issue:
3
ISSN:
0006-8314
Page Range / eLocation ID:
p. 395-414
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$cm2V-1s-1), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of anin-planeelectric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from$$\lambda =3$$λ=3to 12$$\upmu$$μm by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$11\times 10^3$$11×103W/$$\hbox {m}^2$$m2at$$T=2000$$T=2000K for a bias voltage of$$V=23$$V=23V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$\upmu$$μm and 150$$\upmu$$μm, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$12^\circ$$12and$$80^\circ$$80by tuning the Fermi energy between$$E_F=1.0$$EF=1.0eV and$$E_F=0.25$$EF=0.25eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.

     
    more » « less
  2. Abstract

    The sensitivity of urban canopy air temperature (Ta) to anthropogenic heat flux (QAH) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability ofΔTa/ΔQAH(whereΔrepresents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosingΔTa/ΔQAHsimulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the medianΔTa/ΔQAHis around 0.01K W m21over the CONUS. Besides the direct effect ofQAHonTa, there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance (ca), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out andΔTa/ΔQAHis mostly controlled by the direct effect in summer. In winter,ΔTa/ΔQAHbecomes stronger, with the median value increased by about 20% due to weakened negative feedback associated withca. The spatial and temporal (both seasonal and diurnal) variability ofΔTa/ΔQAHas well as the nonlinear response ofΔTatoΔQAHare strongly related to the variability ofca, highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models.

     
    more » « less
  3. Abstract

    We present simulations of two-phase flow using the Rothman and Keller colour gradient Lattice Boltzmann method to study viscous fingering when a “red fluid” invades a porous model initially filled with a “blue” fluid with different viscosity. We conducted eleven suites of 81 numerical experiments totalling 891 simulations, where each suite had a different random realization of the porous model and spanned viscosity ratios in the range$$M\in [0.01,100]$$M[0.01,100]and wetting angles in the range$$\theta _w\in [180^\circ ,0^\circ ]$$θw[180,0]to allow us to study the effect of these parameters on the fluid-displacement morphology and saturation at breakthrough (sweep). Although sweep often increased with wettability, this was not always so and the sweep phase space landscape, defined as the difference in saturation at a given wetting angle relative to saturation for the non-wetting case, had hills, ridges and valleys. At low viscosity ratios, flow at breakthrough is localized through narrow fingers that span the model. After breakthrough, the flow field continues to evolve and the saturation continues to increase albeit at a reduced rate, and eventually exceeds 90% for both non-wetting and wetting cases. The existence of a complicated sweep phase space at breakthrough, and continued post-breakthrough evolution suggests the hydrodynamics and sweep is a complicated function of wetting angle, viscosity ratio and time, which has major potential implications to Enhanced Oil Recovery by water flooding, and hence, on estimates of global oil reserves. Validation of these results via experiments is required to ensure they translate to field studies.

     
    more » « less
  4. Abstract

    Emergent trends in the device development for neural prosthetics have focused on establishing stimulus localization, improving longevity through immune compatibility, reducing energy re-quirements, and embedding active control in the devices. Ultrasound stimulation can single-handedly address several of these challenges. Ultrasonic stimulus of neurons has been studied extensively from 100 kHz to 10 MHz, with high penetration but less localization. In this paper, a chip-scale device consisting of piezoelectric Aluminum Nitride ultrasonic transducers was engineered to deliver gigahertz (GHz) ultrasonic stimulus to the human neural cells. These devices provide a path towards complementary metal oxide semiconductor (CMOS) integration towards fully controllable neural devices. At GHz frequencies, ultrasonic wavelengths in water are a few microns and have an absorption depth of 10–20 µm. This confinement of energy can be used to control stimulation volume within a single neuron. This paper is the first proof-of-concept study to demonstrate that GHz ultrasound can stimulate neuronsin vitro. By utilizing optical calcium imaging, which records calcium ion flux indicating occurrence of an action potential, this paper demonstrates that an application of a nontoxic dosage of GHz ultrasonic waves$$(\ge 0.05\frac{W}{c{m}^{2}})$$(0.05Wcm2)caused an average normalized fluorescence intensity recordings >1.40 for the calcium transients. Electrical effects due to chip-scale ultrasound delivery was discounted as the sole mechanism in stimulation, with effects tested atα = 0.01 statistical significance amongst all intensities and con-trol groups. Ionic transients recorded optically were confirmed to be mediated by ion channels and experimental data suggests an insignificant thermal contributions to stimulation, with a predicted increase of 0.03oCfor$$1.2\frac{W}{c{m}^{2}}\cdot $$1.2Wcm2This paper paves the experimental framework to further explore chip-scale axon and neuron specific neural stimulation, with future applications in neural prosthetics, chip scale neural engineering, and extensions to different tissue and cell types.

     
    more » « less
  5. Abstract

    Massive gully land consolidation projects, launched in China’s Loess Plateau, aim to restore 2667$$\mathrm{km}^2$$km2agricultural lands in total by consolidating 2026 highly eroded gullies. This effort represents a social engineering project where the economic development and livelihood of the farming families are closely tied to the ability of these emergent landscapes to provide agricultural services. Whether these ‘time zero’ landscapes have the resilience to provide a sustainable soil condition such as soil organic carbon (SOC) content remains unknown. By studying two watersheds, one of which is a control site, we show that the consolidated gully serves as an enhanced carbon sink, where the magnitude of SOC increase rate (1.0$$\mathrm{g\,C}/\mathrm{m}^2/\mathrm{year}$$gC/m2/year) is about twice that of the SOC decrease rate (− 0.5$$\mathrm{g\,C}/\mathrm{m}^2/\mathrm{year}$$gC/m2/year) in the surrounding natural watershed. Over a 50-year co-evolution of landscape and SOC turnover, we find that the dominant mechanisms that determine the carbon cycling are different between the consolidated gully and natural watersheds. In natural watersheds, the flux of SOC transformation is mainly driven by the flux of SOC transport; but in the consolidated gully, the transport has little impact on the transformation. Furthermore, we find that extending the surface carbon residence time has the potential to efficiently enhance carbon sequestration from the atmosphere with a rate as high as 8$$\mathrm{g\,C}/\mathrm{m}^2/\mathrm{year}$$gC/m2/yearcompared to the current 0.4$$\mathrm{g\,C}/\mathrm{m}^2/\mathrm{year}$$gC/m2/year. The success for the completion of all gully consolidation would lead to as high as 26.67$$\mathrm{Gg\,C}/\mathrm{year}$$GgC/yearsequestrated into soils. This work, therefore, not only provides an assessment and guidance of the long-term sustainability of the ‘time zero’ landscapes but also a solution for sequestration$$\hbox {CO}_2$$CO2into soils.

     
    more » « less