We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
The preALPACA (Alaskan Layered Pollution And Chemical Analysis) 2019 winter campaign took place in Fairbanks, Alaska, in November–December 2019. One objective of the campaign was to study the lifecycle of surfacebased temperature inversions and the associated surface energy budget changes. Several instruments, including a 4component radiometer and sonic anemometer were deployed in the open, snowcovered University of Alaska Fairbanks (UAF) Campus Agricultural Field. A local flow from a connecting valley occurs at this site. This flow is characterized by locally elevated wind speeds (greater than 3 m s
 NSFPAR ID:
 10370136
 Publisher / Repository:
 Springer Science + Business Media
 Date Published:
 Journal Name:
 BoundaryLayer Meteorology
 Volume:
 185
 Issue:
 3
 ISSN:
 00068314
 Page Range / eLocation ID:
 p. 395414
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract ), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and deriving the completely general nonlocal fluctuationdissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$V=23$$ $V=23$ m and 150$$\upmu$$ $\mu $ m, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$\upmu$$ $\mu $ and$$12^\circ$$ ${12}^{\circ}$ by tuning the Fermi energy between$$80^\circ$$ ${80}^{\circ}$ eV and$$E_F=1.0$$ ${E}_{F}=1.0$ eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequencydependent. Using finitedifference time domain calculations, coupled mode theory, and RPA, we develop the model of a midIR light source based on NPG, which will pave the way to graphenebased optical midIR communication, midIR color displays, midIR spectroscopy, and virus detection.$$E_F=0.25$$ ${E}_{F}=0.25$ 
Abstract The sensitivity of urban canopy air temperature (
) to anthropogenic heat flux ( ${T}_{a}$ ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of ${Q}_{AH}$ (where $\mathrm{\Delta}{T}_{a}/\mathrm{\Delta}{Q}_{AH}$ represents a change), we develop a forcingfeedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing $\mathrm{\Delta}$ simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median $\mathrm{\Delta}{T}_{a}/\mathrm{\Delta}{Q}_{AH}$ is around 0.01 $\mathrm{\Delta}{T}_{a}/\mathrm{\Delta}{Q}_{AH}$ over the CONUS. Besides the direct effect of $\text{K\hspace{0.17em}}{\left(\text{W\hspace{0.17em}}{\text{m}}^{\text{2}}\right)}^{1}$ on ${Q}_{AH}$ , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( ${T}_{a}$ ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and ${c}_{a}$ is mostly controlled by the direct effect in summer. In winter, $\mathrm{\Delta}{T}_{a}/\mathrm{\Delta}{Q}_{AH}$ becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with $\mathrm{\Delta}{T}_{a}/\mathrm{\Delta}{Q}_{AH}$ . The spatial and temporal (both seasonal and diurnal) variability of ${c}_{a}$ as well as the nonlinear response of $\mathrm{\Delta}{T}_{a}/\mathrm{\Delta}{Q}_{AH}$ to $\mathrm{\Delta}{T}_{a}\text{\hspace{0.17em}}$ are strongly related to the variability of $\mathrm{\Delta}{Q}_{AH}\text{\hspace{0.17em}}$ , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models. ${c}_{a}$ 
Abstract We present simulations of twophase flow using the Rothman and Keller colour gradient Lattice Boltzmann method to study viscous fingering when a “red fluid” invades a porous model initially filled with a “blue” fluid with different viscosity. We conducted eleven suites of 81 numerical experiments totalling 891 simulations, where each suite had a different random realization of the porous model and spanned viscosity ratios in the range
and wetting angles in the range$$M\in [0.01,100]$$ $M\in [0.01,100]$ to allow us to study the effect of these parameters on the fluiddisplacement morphology and saturation at breakthrough (sweep). Although sweep often increased with wettability, this was not always so and the sweep phase space landscape, defined as the difference in saturation at a given wetting angle relative to saturation for the nonwetting case, had hills, ridges and valleys. At low viscosity ratios, flow at breakthrough is localized through narrow fingers that span the model. After breakthrough, the flow field continues to evolve and the saturation continues to increase albeit at a reduced rate, and eventually exceeds 90% for both nonwetting and wetting cases. The existence of a complicated sweep phase space at breakthrough, and continued postbreakthrough evolution suggests the hydrodynamics and sweep is a complicated function of wetting angle, viscosity ratio and time, which has major potential implications to Enhanced Oil Recovery by water flooding, and hence, on estimates of global oil reserves. Validation of these results via experiments is required to ensure they translate to field studies.$$\theta _w\in [180^\circ ,0^\circ ]$$ ${\theta}_{w}\in [{180}^{\circ},{0}^{\circ}]$ 
Abstract Emergent trends in the device development for neural prosthetics have focused on establishing stimulus localization, improving longevity through immune compatibility, reducing energy requirements, and embedding active control in the devices. Ultrasound stimulation can singlehandedly address several of these challenges. Ultrasonic stimulus of neurons has been studied extensively from 100 kHz to 10 MHz, with high penetration but less localization. In this paper, a chipscale device consisting of piezoelectric Aluminum Nitride ultrasonic transducers was engineered to deliver gigahertz (GHz) ultrasonic stimulus to the human neural cells. These devices provide a path towards complementary metal oxide semiconductor (CMOS) integration towards fully controllable neural devices. At GHz frequencies, ultrasonic wavelengths in water are a few microns and have an absorption depth of 10–20
µm . This confinement of energy can be used to control stimulation volume within a single neuron. This paper is the first proofofconcept study to demonstrate that GHz ultrasound can stimulate neuronsin vitro . By utilizing optical calcium imaging, which records calcium ion flux indicating occurrence of an action potential, this paper demonstrates that an application of a nontoxic dosage of GHz ultrasonic waves caused an average normalized fluorescence intensity recordings >1.40 for the calcium transients. Electrical effects due to chipscale ultrasound delivery was discounted as the sole mechanism in stimulation, with effects tested at$$(\ge 0.05\frac{W}{c{m}^{2}})$$ $\left(\ge 0.05\frac{W}{c{m}^{2}}\right)$α = 0.01 statistical significance amongst all intensities and control groups. Ionic transients recorded optically were confirmed to be mediated by ion channels and experimental data suggests an insignificant thermal contributions to stimulation, with a predicted increase of 0.03^{o}C for This paper paves the experimental framework to further explore chipscale axon and neuron specific neural stimulation, with future applications in neural prosthetics, chip scale neural engineering, and extensions to different tissue and cell types.$$1.2\frac{W}{c{m}^{2}}\cdot $$ $1.2\frac{W}{c{m}^{2}}\cdot $ 
Abstract Massive gully land consolidation projects, launched in China’s Loess Plateau, aim to restore 2667
agricultural lands in total by consolidating 2026 highly eroded gullies. This effort represents a social engineering project where the economic development and livelihood of the farming families are closely tied to the ability of these emergent landscapes to provide agricultural services. Whether these ‘time zero’ landscapes have the resilience to provide a sustainable soil condition such as soil organic carbon (SOC) content remains unknown. By studying two watersheds, one of which is a control site, we show that the consolidated gully serves as an enhanced carbon sink, where the magnitude of SOC increase rate (1.0$$\mathrm{km}^2$$ ${\mathrm{km}}^{2}$ ) is about twice that of the SOC decrease rate (− 0.5$$\mathrm{g\,C}/\mathrm{m}^2/\mathrm{year}$$ $g\phantom{\rule{0ex}{0ex}}C/{m}^{2}/\mathrm{year}$ ) in the surrounding natural watershed. Over a 50year coevolution of landscape and SOC turnover, we find that the dominant mechanisms that determine the carbon cycling are different between the consolidated gully and natural watersheds. In natural watersheds, the flux of SOC transformation is mainly driven by the flux of SOC transport; but in the consolidated gully, the transport has little impact on the transformation. Furthermore, we find that extending the surface carbon residence time has the potential to efficiently enhance carbon sequestration from the atmosphere with a rate as high as 8$$\mathrm{g\,C}/\mathrm{m}^2/\mathrm{year}$$ $g\phantom{\rule{0ex}{0ex}}C/{m}^{2}/\mathrm{year}$ compared to the current 0.4$$\mathrm{g\,C}/\mathrm{m}^2/\mathrm{year}$$ $g\phantom{\rule{0ex}{0ex}}C/{m}^{2}/\mathrm{year}$ . The success for the completion of all gully consolidation would lead to as high as 26.67$$\mathrm{g\,C}/\mathrm{m}^2/\mathrm{year}$$ $g\phantom{\rule{0ex}{0ex}}C/{m}^{2}/\mathrm{year}$ sequestrated into soils. This work, therefore, not only provides an assessment and guidance of the longterm sustainability of the ‘time zero’ landscapes but also a solution for sequestration$$\mathrm{Gg\,C}/\mathrm{year}$$ $\mathrm{Gg}\phantom{\rule{0ex}{0ex}}C/\mathrm{year}$ into soils.$$\hbox {CO}_2$$ ${\text{CO}}_{2}$