skip to main content


Title: Ionospheric Boundaries Derived From Auroral Images
Abstract

This paper presents updated methods for locating the Poleward and Equatorward Auroral Luminosity Boundaries (PALB and EALB) directly from IMAGE Far UltraViolet (FUV) images of the Northern Hemisphere auroral oval. Separate boundaries are determined from images measured at different FUV wavelengths. In addition, new methods for indirectly estimating the Open‐Closed magnetic field line Boundary (OCB) and the Equatorward Precipitation Boundary (EPB) locations are presented; these new boundaries are derived from a combination of the auroral luminosity boundary estimates with statistical latitudinal offsets derived from comparisons with low‐altitude spacecraft Particle Precipitation Boundaries (PPBs). Subsequently, we derive new circle model fits for all these boundary data sets, as well as new quality control criteria for these model fits. The suitability of circle fits for each of the data sets is discussed, and the OCB and PALB circle fits are validated against the Convection Reversal Boundary (CRB), as measured by low‐altitude in situ spacecraft. All the new boundary data sets, covering the epoch May 2000 to October 2002, are freely available online.

 
more » « less
NSF-PAR ID:
10370146
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
7
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The high-latitude atmosphere is a dynamic region with processes that respond to forcing from the Sun, magnetosphere, neutral atmosphere, andionosphere. Historically, the dominance of magnetosphere–ionosphere interactions has motivated upper atmospheric studies to use magneticcoordinates when examining magnetosphere–ionosphere–thermosphere coupling processes. However, there are significant differences between thedominant interactions within the polar cap, auroral oval, and equatorward of the auroral oval. Organising data relative to these boundaries hasbeen shown to improve climatological and statistical studies, but the process of doing so is complicated by the shifting nature of the auroral ovaland the difficulty in measuring its poleward and equatorward boundaries. This study presents a new set of open–closed magnetic field line boundaries (OCBs) obtained from Active Magnetosphere and Planetary ElectrodynamicsResponse Experiment (AMPERE) magnetic perturbation data. AMPERE observations of field-aligned currents (FACs) are used to determine the location ofthe boundary between the Region 1 (R1) and Region 2 (R2) FAC systems. This current boundary is thought to typically lie a few degrees equatorwardof the OCB, making it a good candidate for obtaining OCB locations. The AMPERE R1–R2 boundaries are compared to the Defense MeteorologicalSatellite Program Special Sensor J (DMSP SSJ) electron energy flux boundaries to test this hypothesis and determine the best estimate of thesystematic offset between the R1–R2 boundary and the OCB as a function of magnetic local time. These calibrated boundaries, as well as OCBsobtained from the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) observations, are validated using simultaneous observations of theconvection reversal boundary measured by DMSP. The validation shows that the OCBs from IMAGE and AMPERE may be used together in statisticalstudies, providing the basis of a long-term data set that can be used to separate observations originating inside and outside of the polar cap. 
    more » « less
  2. Abstract

    Geomagnetic pulsations in Pc5‐6 band (~3–20 min) are persistent feature of ULF activity at dayside high latitudes. Magnetopause surface eigenmodes may be suggested as potential mechanism of these pulsations. One might expect the ground response of these modes to be near ionospheric projection of the open‐closed field line boundary (OCB). Using data from instruments located at Svalbard we study transient geomagnetic response to impulsive “intrusion” of magnetosheath plasma into the dayside magnetosphere. These intrusions are triggered by modest changes of interplanetary magnetic field to southward, and observed as sudden shifts of equatorward red aurora boundary to lower latitudes and green line emission intensification. Each auroral disturbance is accompanied by burst of ~1.7–2.0‐mHz geomagnetic pulsations. Near‐cusp latitudinal structure of ULF pulsations is compared with instant location of equatorward boundary of the red aurora, assumed to be a proxy of the OCB. Optical OCB latitude has been identified using data from the meridian scanning photometer. The latitudinal maximum of the transient geomagnetic response tends to be located near disturbed OCB proxy, within the error ~1°–2° of the photometer and magnetometer methods. Recorded transient pulsations may be associated with the ground image of the magnetopause surface mode harmonic. Theoretical consideration indicates that after an initial excitation, surface large‐scale mode converts into localized Alfvén oscillations and thus can exist for limited time only. Therefore, MHD surface modes in realistic inhomogeneous plasma cannot be considered in isolation, but as a combined system of modes with discrete and continuous spectra with irreversible transformation between them.

     
    more » « less
  3. Abstract

    Sub‐auroral polarization streams (SAPS) are one of the most intense manifestations of magnetosphere‐ionosphere coupling. Magnetospheric energy transport to the ionosphere within SAPS is associated with Poynting flux and the precipitation of thermal energy (0.03–30 keV) plasma sheet particles. However, much less is known about the precipitation of high‐energy (≥50 keV) ions and electrons and their contribution to the low‐altitude SAPS physics. This study examines precipitation within one SAPS event using a combination of equatorial THEMIS and low‐altitude DMSP and ELFIN observations, which, jointly, cover from a few eV up to a few MeV energy range. Observed SAPS are embedding the ion isotropy boundary, which includes strong 300–1,000 keV ion precipitation. SAPS are associated with intense precipitation of relativistic electrons (≤3 MeV), well equatorward of the electron isotropy boundary. Such relativistic electron precipitation is likely due to electron scattering by electromagnetic ion cyclotron waves at the equator.

     
    more » « less
  4. Abstract

    Auroral observations were first to identify the substorm, and later used to propose that substorm onset is triggered in the inner plasma sheet (equatorward portion of the auroral oval) by an intrusion of low entropy plasma comprising plasma sheet flow channels. Longitudinal localization makes the intruding flow channels difficult to observe with spacecraft. However, they are detectable in the ionosphere via the broader, two‐dimensional coverage by radars. Line‐of‐sight radar flow measurements have provided considerable support for the onset proposal. Here we use two‐dimensional, ionospheric flow maps for further testing. Since these maps are derived without the smoothing from global fits typically used for global convection maps, their spatial resolution is significantly improved, allowing representation of localized spatial structures. These maps show channels of enhanced ionospheric flow intruding to the time and location of substorm onset. We also see evidence that these intruding flows enter the plasma sheet from the polar cap, and that azimuthal spread of the reduced entropy plasma in the inner plasma sheet contributes to azimuthal onset spreading after initial onset. Identified events with appropriate radar data remain limited, but we have found no exceptions to consistency with flow channel triggering. Thus, these analyses strongly support the proposal that substorm onset is due to the intrusion of new plasma to the onset region. The lower entropy of the new plasma likely changes the entropy distribution of inner plasma sheet, a change possibly important for the substorm onset instability seen via the growing waves that demarcate substorm auroral onset.

     
    more » « less
  5. Abstract

    The role of diffuse electron precipitation in the formation of subauroral polarization streams (SAPS) is investigated with the Multiscale Atmosphere‐Geospace Environment (MAGE) model. Diffuse precipitation is derived from the distribution of drifting electrons. SAPS manifest themselves as a separate mesoscale flow channel in the duskside ionosphere, which gradually merges with the primary auroral convection toward dayside as the equatorward auroral boundary approaches the poleward Region‐2 field‐aligned currents (FACs) boundary. SAPS expand to lower latitudes and toward the nightside during the main phase of a geomagnetic storm, associated with magnetotail earthward plasma flows building up the ring current and intensifying Region‐2 FACs and electron precipitation. SAPS shrink poleward and sunward as the interplanetary magnetic field turns northward. When diffuse precipitation is turned off in a controlled MAGE simulation, ring current and duskside Region‐2 FACs become weaker, but subauroral zonal ion drifts are still comparable to auroral convection. However, subauroral and auroral convection manifest as a single broad flow channel without showing any mesoscale structure. SAPS overlap with the downward Region‐2 FACs equatorward of diffuse precipitation, where poleward electric fields are strong due to a low conductance in the subauroral ionosphere. The Region‐2 FACs extend to latitudes lower than the diffuse precipitation because the ring current protons penetrate closer to the Earth than the electrons do. This study reproduces the key physics of SAPS formation and their evolution in the coupled magnetosphere‐ionosphere during a geomagnetic storm. Diffuse electron precipitation is demonstrated to play a critical role in determining SAPS location and structure.

     
    more » « less