skip to main content

Title: An Atlas of Convection in Main-sequence Stars

Convection is ubiquitous in stars and occurs under many different conditions. Here we explore convection in main-sequence stars through two lenses: dimensionless parameters arising from stellar structure and parameters that emerge from the application of mixing length theory. We first define each quantity in terms familiar to both the 1D stellar evolution community and the hydrodynamics community. We then explore the variation of these quantities across different convection zones, different masses, and different stages of main-sequence evolution. We find immense diversity across stellar convection zones. Convection occurs in thin shells, deep envelopes, and nearly spherical cores; it can be efficient or inefficient, rotationally constrained or not, transsonic or deeply subsonic. This atlas serves as a guide for future theoretical and observational investigations by indicating which regimes of convection are active in a given star, and by describing appropriate model assumptions for numerical simulations.

; ; ;
Publication Date:
Journal Name:
The Astrophysical Journal Supplement Series
Page Range or eLocation-ID:
Article No. 19
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this

    We present an extensive catalogue of BY Draconis (BY Dra)-type variables and their stellar parameters. BY Dra are main-sequence FGKM-type stars. They exhibit inhomogeneous starspots and bright faculae in their photospheres. These features are caused by stellar magnetic fields, which are carried along with the stellar disc through rotation and which produce gradual modulations in their light curves (LCs). Our main objective is to characterize the properties of BY Dra variables over a wide range of stellar masses, temperatures, and rotation periods. A recent study categorized 84 697 BY Dra variables from Data Release 2 of the Zwicky Transient Facility based on their LCs. We have collected additional photometric data from multiple surveys and performed broad-band spectral energy distribution fits to estimate stellar parameters. We found that more than half of our sample objects are of K spectral type, covering an extensive range of stellar parameters in the low-mass regime (0.1–1.3 M⊙). Compared with previous studies, most of the sources in our catalogue are rapid rotators, and so most of them must be young stars for which a spin-down has not yet occurred. We subdivided our catalogue based on convection zone depth and found that the photospheric activity index, Sph, ismore »lower for higher effective temperatures, i.e. for thinner convective envelopes. We observe a broad range of photospheric magnetic activity for different spectral classes owing to the presence of stellar populations of different ages. We found a higher magnetically active fraction for K- than M-type stars.

    « less

    We measure rotational broadening in spectra taken by the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey to characterize the relationship between stellar multiplicity and rotation. We create a sample of 2786 giants and 24 496 dwarfs with stellar parameters and multiple radial velocities from the APOGEE pipeline, projected rotation speeds vsin i determined from our own pipeline, and distances, masses, and ages measured by Sanders & Das. We use the statistical distribution of the maximum shift in the radial velocities, ΔRVmax, as a proxy for the close binary fraction to explore the interplay between stellar evolution, rotation, and multiplicity. Assuming that the minimum orbital period allowed is the critical period for Roche Lobe overflow and rotational synchronization, we calculate theoretical upper limits on expected vsin i and ΔRVmax values. These expectations agree with the positive correlation between the maximum ΔRVmax and vsin i values observed in our sample as a function of log(g). We find that the fast rotators in our sample have a high occurrence of short-period [log(P/d) ≲ 4] companions. We also find that old, rapidly rotating main-sequence stars have larger completeness-corrected close binary fractions than their younger peers. Furthermore, rapidly rotating stars with large ΔRVmax consistently show differences of 1–10 Gyrmore »between the predicted gyrochronological and measured isochronal ages. These results point towards a link between rapid rotation and close binarity through tidal interactions. We conclude that stellar rotation is strongly correlated with stellar multiplicity in the field, and caution should be taken in the application of gyrochronology relations to cool stars.

    « less

    Planetary engulfment events can occur while host stars are on the main sequence. The addition of rocky planetary material during engulfment will lead to refractory abundance enhancements in the host star photosphere, but the level of enrichment and its duration will depend on mixing processes that occur within the stellar interior, such as convection, diffusion, and thermohaline mixing. We examine engulfment signatures by modelling the evolution of photospheric lithium abundances. Because lithium can be burned before or after the engulfment event, it produces unique signatures that vary with time and host star type. Using mesa stellar models, we quantify the strength and duration of these signatures following the engulfment of a 1, 10, or 100 M⊕ planetary companion with bulk Earth composition, for solar-metallicity host stars with masses ranging from 0.5 to 1.4 M⊙. We find that lithium is quickly depleted via burning in low-mass host stars ($\lesssim 0.7 \, {\rm M}_\odot$) on a time-scale of a few hundred Myrs, but significant lithium enrichment signatures can last for Gyrs in G-type stars ($\sim \! 0.9 \, {\rm M}_{\odot }$). For more massive stars (1.3−1.4 M⊙), engulfment can enhance internal mixing and diffusion processes, potentially decreasing the surface lithium abundance. Our predicted signatures frommore »exoplanet engulfment are consistent with observed lithium-rich solar-type stars and abundance enhancements in chemically inhomogeneous binary stars.

    « less

    Understanding the radii of massive stars throughout their evolution is important to answering numerous questions about stellar physics, from binary interactions on the main sequence to the pre-supernova radii. One important factor determining a star’s radius is the fraction of its mass in elements heavier than Helium (metallicity, Z). However, the metallicity enters stellar evolution through several distinct microphysical processes, and which dominates can change throughout stellar evolution and with the overall magnitude of Z. We perform a series of numerical experiments with 15 $\, \mathrm{M}_{\odot }$mesa models computed doubling separately the metallicity entering the radiative opacity, the equation of state, and the nuclear reaction network to isolate the impact of each on stellar radii. We explore separately models centred around two metallicity values: one near solar Z = 0.02 and another sub-solar Z ∼ 10−3, and consider several key epochs from the end of the main sequence to core carbon depletion. We find that the metallicity entering the opacity dominates at most epochs for the solar metallicity models, contributing to on average ∼60–90 per cent of the total change in stellar radius. Nuclear reactions have a larger impact (∼50–70 per cent) during most epochs in the subsolar Z models. The methodology introduced heremore »can be employed more generally to propagate known microphysics errors into uncertainties on macrophysical observables including stellar radii.

    « less
  5. Abstract

    One of the largest uncertainties in stellar structure and evolution theory is the transport of angular momentum in the stellar interiors. Asteroseismology offers a powerful tool for measuring the internal rotation frequencies of pulsating stars, but the number of such measurements has remained few for ≳3Mmain-sequence stars. In this work, we compile a list of 52 slowly pulsating B stars for which the interior rotation has been measured asteroseismically. The measurements of the spin parameters, which describe the relative importance of rotation, for the gravito-inertial mode oscillations show that for 40 of the stars the oscillations fall within the subinertial regime. We find that the core rotation frequencies of the stars decrease as a function of age and show evidence of angular momentum transport occurring on the main sequence. Finally, we derive the inclination angles of the stars, showing that they are generally consistent with the expectations from surface cancellation effects for the given oscillation modes.