skip to main content


Title: Photonic Platforms Using In‐Plane Optical Anisotropy of Tin (II) Selenide and Black Phosphorus
  more » « less
NSF-PAR ID:
10370164
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Photonics Research
Volume:
2
Issue:
12
ISSN:
2699-9293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1.  
    more » « less
  2. ABSTRACT Silicon telluride (Si2Te3) is a silicon-based 2D chalcogenide with potential applications in optoelectronics. It has a unique crystal structure where Si atoms form Si-Si dimers to occupy the “metal” sites. In this paper, we report an ab initio computational study of its optical dielectric properties using the GW approximation and the Bethe-Salpeter equation (BSE). Strong in-plane optical anisotropy is discovered. The imaginary part of the dielectric constant in the direction parallel to the Si-Si dimers is found to be much lower than that perpendicular to the dimers. The optical measurement of the absorption spectra of 2D Si2Te3 nanoplates shows modulation of the absorption coefficient under 90-degree rotation, confirming the computational results. We show the optical anisotropy originates from the particular compositions of the wavefunctions in the valence and conduction bands. Because it is associated with the Si dimer orientation, the in-plane optical anisotropy can potentially be dynamically controlled by electrical field and strain, which may be useful for new device design. In addition, BSE calculations reduce GW quasiparticle band gap by 0.3 eV in bulk and 0.6 eV in monolayer, indicating a large excitonic effect in Si2Te3. Furthermore, including electron-hole interaction in bulk calculations significantly reduces the imaginary part of the dielectric constant in the out-of-plane direction, suggesting strong interlayer exciton effect in Si2Te3 multilayers. 
    more » « less
  3.  
    more » « less
  4. Abstract

    Magnetic van der Waals (vdW) materials are the centerpiece of atomically thin devices with spintronic and optoelectronic functions. Exploring new chemistry paths to tune their magnetic and optical properties enables significant progress in fabricating heterostructures and ultracompact devices by mechanical exfoliation. The key parameter to sustain ferromagnetism in 2D is magnetic anisotropy—a tendency of spins to align in a certain crystallographic direction known as easy‐axis. In layered materials, two limits of easy‐axis are in‐plane (XY) and out‐of‐plane (Ising). Light polarization and the helicity of topological states can couple to magnetic anisotropy with promising photoluminescence or spin‐orbitronic functions. Here, a unique experiment is designed to control the easy‐axis, the magnetic transition temperature, and the optical gap simultaneously in a series of CrCl3−xBrxcrystals between CrCl3withXYand CrBr3with Ising anisotropy. The easy‐axis is controlled between the two limits by varying spin–orbit coupling with the Br content in CrCl3−xBrx. The optical gap, magnetic transition temperature, and interlayer spacing are all tuned linearly withx. This is the first report of controlling exchange anisotropy in a layered crystal and the first unveiling of mixed halide chemistry as a powerful technique to produce functional materials for spintronic devices.

     
    more » « less
  5. Abstract

    Recent developments in 2D magnetic materials have motivated the search for new van der Waals magnetic materials, especially Ising‐type magnets with strong magnetic anisotropy. Fe‐basedMPX3(M= transition metal,X= chalcogen) compounds such as FePS3and FePSe3both exhibit an Ising‐type magnetic order, but FePSe3receives much less attention compared to FePS3. This work focuses on establishing the strategy to engineer magnetic anisotropy and exchange interactions in this less‐explored compound. Through chalcogen and metal substitutions, the magnetic anisotropy is found to be immune against S substitution for Se whereas tunable only with heavy Mn substitution for Fe. In particular, Mn substitution leads to a continuous rotation of magnetic moments from the out‐of‐plane direction toward the in‐plane. Furthermore, the magnetic ordering temperature displays non‐monotonic doping dependence for both chalcogen and metal substitutions but due to different mechanisms. These findings provide deeper insight into the Ising‐type magnetism in this important van der Waals material, shedding light on the study of other Ising‐type magnetic systems as well as discovering novel 2D magnets for potential applications in spintronics.

     
    more » « less