skip to main content

Title: Exposure Assessment Techniques Applied to the Highly Censored Deepwater Horizon Gulf Oil Spill Personal Measurements
Abstract

The GuLF Long-term Follow-up Study (GuLF STUDY) is investigating potential adverse health effects of workers involved in the Deepwater Horizon (DWH) oil spill response and cleanup (OSRC). Over 93% of the 160 000 personal air measurements taken on OSRC workers were below the limit of detection (LOD), as reported by the analytic labs. At this high level of censoring, our ability to develop exposure estimates was limited. The primary objective here was to reduce the number of measurements below the labs’ reported LODs to reflect the analytic methods’ true LODs, thereby facilitating the use of a relatively unbiased and precise Bayesian method to develop exposure estimates for study exposure groups (EGs). The estimates informed a job-exposure matrix to characterize exposure of study participants. A second objective was to develop descriptive statistics for relevant EGs that did not meet the Bayesian criteria of sample size ≥5 and censoring ≤80% to achieve the aforementioned level of bias and precision. One of the analytic labs recalculated the measurements using the analytic method’s LOD; the second lab provided raw analytical data, allowing us to recalculate the data values that fell between the originally reported LOD and the analytical method’s LOD. We developed rules more » for developing Bayesian estimates for EGs with >80% censoring. The remaining EGs were 100% censored. An order-based statistical method (OBSM) was developed to estimate exposures that considered the number of measurements, geometric standard deviation, and average LOD of the censored samples for N ≥ 20. For N < 20, substitution of ½ of the LOD was assigned. Recalculation of the measurements lowered overall censoring from 93.2 to 60.5% and of the THC measurements, from 83.1 to 11.2%. A total of 71% of the EGs met the ≤15% relative bias and <65% imprecision goal. Another 15% had censoring >80% but enough non-censored measurements to apply Bayesian methods. We used the OBSM for 3% of the estimates and the simple substitution method for 11%. The methods presented here substantially reduced the degree of censoring in the dataset and increased the number of EGs meeting our Bayesian method’s desired performance goal. The OBSM allowed for a systematic and consistent approach impacting only the lowest of the exposure estimates. This approach should be considered when dealing with highly censored datasets.

« less
Authors:
; ; ; ; ; ; ;
Publication Date:
NSF-PAR ID:
10370166
Journal Name:
Annals of Work Exposures and Health
Volume:
66
Issue:
Supplement_1
Page Range or eLocation-ID:
p. i56-i70
ISSN:
2398-7308
Publisher:
Oxford University Press
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background The 2010 Deepwater Horizon (DWH) oil spill involved thousands of workers and volunteers to mitigate the oil release and clean-up after the spill. Health concerns for these participants led to the initiation of a prospective epidemiological study (GuLF STUDY) to investigate potential adverse health outcomes associated with the oil spill response and clean-up (OSRC). Characterizing the chemical exposures of the OSRC workers was an essential component of the study. Workers on the four oil rig vessels mitigating the spill and located within a 1852 m (1 nautical mile) radius of the damaged wellhead [the Discoverer Enterprise (Enterprise), the Development Driller II (DDII), the Development Driller III (DDIII), and the Helix Q4000] had some of the greatest potential for chemical exposures. Objectives The aim of this paper is to characterize potential personal chemical exposures via the inhalation route for workers on those four rig vessels. Specifically, we presented our methodology and descriptive statistics of exposure estimates for total hydrocarbons (THCs), benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H) for various job groups to develop exposure groups for the GuLF STUDY cohort. Methods Using descriptive information associated with the measurements taken on various jobs on these rig vessels and with jobmore »titles from study participant responses to the study questionnaire, job groups [unique job/rig/time period (TP) combinations] were developed to describe groups of workers with the same or closely related job titles. A total of 500 job groups were considered for estimation using the available 8139 personal measurements. We used a univariate Bayesian model to analyze the THC measurements and a bivariate Bayesian regression framework to jointly model the measurements of THC and each of the BTEX-H chemicals separately, both models taking into account the many measurements that were below the analytic limit of detection. Results Highest THC exposures occurred in TP1a and TP1b, which was before the well was mechanically capped. The posterior medians of the arithmetic mean (AM) ranged from 0.11 ppm (‘Inside/Other’, TP1b, DDII; and ‘Driller’, TP3, DDII) to 14.67 ppm (‘Methanol Operations’, TP1b, Enterprise). There were statistical differences between the THC AMs by broad job groups, rigs, and time periods. The AMs for BTEX-H were generally about two to three orders of magnitude lower than the THC AMs, with benzene and ethylbenzene measurements being highly censored. Conclusions Our results add new insights to the limited literature on exposures associated with oil spill responses and support the current epidemiologic investigation of potential adverse health effects of the oil spill.« less
  2. Abstract Objectives

    Our objectives were to (i) determine correlations between measurements of THC and of BTEX-H, (ii) apply these linear relationships to predict BTEX-H from measured THC, (iii) use these correlations as informative priors in Bayesian analyses to estimate exposures.

    Methods

    We used a Bayesian left-censored bivariate framework for all 3 objectives. First, we modeled the relationships (i.e. correlations) between THC and each BTEX-H chemical for various overarching groups of measurements using linear regression to determine if correlations derived from linear relationships differed by various exposure determinants. We then used the same linear regression relationships to predict (or impute) BTEX-H measurements from THC when only THC measurements were available. Finally, we used the same linear relationships as priors for the final exposure models that used real and predicted data to develop exposure estimate statistics for each individual exposure group.

    Results

    Correlations between measurements of THC and each of the BTEX-H chemicals (n = 120 for each of BTEX, 36 for n-hexane) differed substantially by area of the Gulf of Mexico and by time period that reflected different oil-spill related exposure opportunities. The correlations generally exceeded 0.5. Use of regression relationships to impute missing data resulted in the addition of >23 000 n-hexane andmore »541 observations for each of BTEX. The relationships were then used as priors for the calculation of exposure statistics while accounting for censored measurement data.

    Conclusions

    Taking advantage of observed relationships between THC and BTEX-H allowed us to develop robust exposure estimates where a large amount of data were missing, strengthening our exposure estimation process for the epidemiologic study.

    « less
  3. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (&gt; 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  4. For large observational studies lacking a control group (unlike randomized controlled trials, RCT), propensity scores (PS) are often the method of choice to account for pre-treatment confounding in baseline characteristics, and thereby avoid substantial bias in treatment estimation. A vast majority of PS techniques focus on average treatment effect estimation, without any clear consensus on how to account for confounders, especially in a multiple treatment setting. Furthermore, for time-to event outcomes, the analytical framework is further complicated in presence of high censoring rates (sometimes, due to non-susceptibility of study units to a disease), imbalance between treatment groups, and clustered nature of the data (where, survival outcomes appear in groups). Motivated by a right-censored kidney transplantation dataset derived from the United Network of Organ Sharing (UNOS), we investigate and compare two recent promising PS procedures, (a) the generalized boosted model (GBM), and (b) the covariate-balancing propensity score (CBPS), in an attempt to decouple the causal effects of treatments (here, study subgroups, such as hepatitis C virus (HCV) positive/negative donors, and positive/negative recipients) on time to death of kidney recipients due to kidney failure, post transplantation. For estimation, we employ a 2-step procedure which addresses various complexities observed in the UNOS databasemore »within a unified paradigm. First, to adjust for the large number of confounders on the multiple sub-groups, we fit multinomial PS models via procedures (a) and (b). In the next stage, the estimated PS is incorporated into the likelihood of a semi-parametric cure rate Cox proportional hazard frailty model via inverse probability of treatment weighting, adjusted for multi-center clustering and excess censoring, Our data analysis reveals a more informative and superior performance of the full model in terms of treatment effect estimation, over sub-models that relaxes the various features of the event time dataset.« less
  5. Abstract

    The GuLF STUDY, initiated by the National Institute of Environmental Health Sciences, is investigating the health effects among workers involved in the oil spill response and clean-up (OSRC) after the Deepwater Horizon (DWH) explosion in April 2010 in the Gulf of Mexico. Clean-up included in situ burning of oil on the water surface and flaring of gas and oil captured near the seabed and brought to the surface. We estimated emissions of PM2.5 and related pollutants resulting from these activities, as well as from engines of vessels working on the OSRC. PM2.5 emissions ranged from 30 to 1.33e6 kg per day and were generally uniform over time for the flares but highly episodic for the in situ burns. Hourly emissions from each source on every burn/flare day were used as inputs to the AERMOD model to develop average and maximum concentrations for 1-, 12-, and 24-h time periods. The highest predicted 24-h average concentrations sometimes exceeded 5000 µg m−3 in the first 500 m downwind of flaring and reached 71 µg m−3 within a kilometer of some in situ burns. Beyond 40 km from the DWH site, plumes appeared to be well mixed, and the predicted 24-h average concentrationsmore »from the flares and in situ burns were similar, usually below 10 µg m−3. Structured averaging of model output gave potential PM2.5 exposure estimates for OSRC workers located in various areas across the Gulf. Workers located nearest the wellhead (hot zone/source workers) were estimated to have a potential maximum 12-h exposure of 97 µg m−3 over the 2-month flaring period. The potential maximum 12-h exposure for workers who participated in in situ burns was estimated at 10 µg m−3 over the ~3-month burn period. The results suggest that burning of oil and gas during the DWH clean-up may have resulted in PM2.5 concentrations substantially above the U.S. National Ambient Air Quality Standard for PM2.5 (24-h average = 35 µg m−3). These results are being used to investigate possible adverse health effects in the GuLF STUDY epidemiologic analysis of PM2.5 exposures.

    « less