skip to main content


Title: Elevated Salinity Rapidly Confers Cross-Tolerance to High Temperature in a Splash-Pool Copepod
Synopsis

Accurate forecasting of organismal responses to climate change requires a deep mechanistic understanding of how physiology responds to present-day variation in the physical environment. However, the road to physiological enlightenment is fraught with complications: predictable environmental fluctuations of any single factor are often accompanied by substantial stochastic variation and rare extreme events, and several factors may interact to affect physiology. Lacking sufficient knowledge of temporal patterns of co-variation in multiple environmental stressors, biologists struggle to design and implement realistic and relevant laboratory experiments. In this study, we directly address these issues, using measurements of the thermal tolerance of freshly collected animals and long-term field records of environmental conditions to explore how the splash-pool copepod Tigriopus californicus adjusts its physiology as its environment changes. Salinity and daily maximum temperature—two dominant environmental stressors experienced by T. californicus—are extraordinarily variable and unpredictable more than 2–3 days in advance. However, they substantially co-vary such that when temperature is high salinity is also likely to be high. Copepods appear to take advantage of this correlation: median lethal temperature of field-collected copepods increases by 7.5°C over a roughly 120 parts-per-thousand range of ambient salinity. Complementary laboratory experiments show that exposure to a single sublethal thermal event or to an abrupt shift in salinity also elicits rapid augmentation of heat tolerance via physiological plasticity, although the effect of salinity dwarfs that of temperature. These results suggest that T. californicus’s physiology keeps pace with the rapid, unpredictable fluctuations of its hypervariable physical environment by responding to the cues provided by recent sublethal stress and, more importantly, by leveraging the mechanistic cross-talk between responses to salinity and heat stress.

 
more » « less
NSF-PAR ID:
10370170
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Integrative Organismal Biology
Volume:
4
Issue:
1
ISSN:
2517-4843
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Reptiles rely on thermal heat exchange to achieve body temperatures (Tbody) conducive to maintaining homeostasis. Diurnal changes in the thermal environment are therefore liable to influence allostatic mediation of survival processes (e.g., immunity) during environmental challenges or stressors. However, the extent to whichTbodyprompts individual variation in physiology remains largely unexplored in reptiles. Our study tested how circulating energy‐mobilizing hormone, energy metabolites, and immunity can vary across basal and stress‐induced allostatic states for plateau side‐blotched lizards (Uta stansburiana uniformis) residing in a heterogeneous thermal environment. We collected baseline and acute stress blood samples from male lizards to compare changes in plasma corticosterone (CORT), glucose, and bacterial killing ability (BKA) in relation to each other andTbody. We hypothesized each physiological parameter differs between allostatic states, whereby stress‐induced activity increases from baseline. At basal and stress‐induced states, we also hypothesized circulating CORT, glucose, and BKA directly correspond with each other andTbody. We found both CORT and BKA increased while glucose instead decreased from acute stress. At basal and stress‐induced allostatic states, we found CORT to be directly related toTbodywhile BKA was inversely related to CORT. We also found BKA and glucose were directly related at baseline, but inversely related following acute stress. Overall, these results demonstrate allostatic outcomes from acute stress in a free‐living reptile and the role of temperature in mediating energetic state and immunity. Future research on reptilian allostasis should consider multiple environmental conditions and their implications for physiological performance and survival.

     
    more » « less
  2. Abstract Climate change is influencing the performance and distribution of macroalgae in the marine environment. Although intertidal seaweeds successfully adapt to extreme and rapid abiotic changes, exposure to persistent or prolonged potentially stressful conditions can affect their vitality and productivity. Rapid glacial melt can severely alter seawater physicochemical characteristics for shallow and intertidal seaweed communities on the Alaskan coasts. Understanding how intertidal macroalgae respond to this complex mosaic of stressors is key to assessing their ability to adapt to a climate change scenario. This study assessed whether specific stress responses and acclimation mechanisms were exhibited by the intertidal brown seaweed Fucus distichus subsp. evanescence may enable it to cope with changing temperatures and reduced light availability linked to tides and glacial inputs. We analyzed its physiological performance, including photobiological variables, nutrient content, nitrate uptake, and oxidative stress descriptors under strictly controlled laboratory conditions. Results show that this subspecies of Fucus distichus may be relatively unaffected by changes in light and temperature driven by glacial melt due to the presence of pre-adapted strategies that collectively express wide physiological tolerances. Outcomes provide insights into some of the mechanisms of stress tolerance of this major structuring seaweed across the Alaskan coast. Nonetheless, glacial melt would also lower salinity in coastal water, potentially resulting in osmotic stress and other physiological effects not explored here. 
    more » « less
  3. null (Ed.)
    Climate change is not only causing steady increases in average global temperatures but also increasing the frequency with which extreme heating events occur. These extreme events may be pivotal in determining the ability of organisms to persist in their current habitats. Thus, it is important to understand how quickly an organism's heat tolerance can be gained and lost relative to the frequency with which extreme heating events occur in the field. We show that the California mussel, Mytilus californianus —a sessile intertidal species that experiences extreme temperature fluctuations and cannot behaviourally thermoregulate—can quickly (in 24–48 h) acquire improved heat tolerance after exposure to a single sublethal heat-stress bout (2 h at 30 or 35°C) and then maintain this improved tolerance for up to three weeks without further exposure to elevated temperatures. This adaptive response improved survival rates by approximately 75% under extreme heat-stress bouts (2 h at 40°C). To interpret these laboratory findings in an ecological context, we evaluated 4 years of mussel body temperatures recorded in the field. The majority (approx. 64%) of consecutive heat-stress bouts were separated by 24–48 h, but several consecutive heat bouts were separated by as much as 22 days. Thus, the ability of M. californianus to maintain improved heat tolerance for up to three weeks after a single sublethal heat-stress bout significantly improves their probability of survival, as approximately 33% of consecutive heat events are separated by 3–22 days. As a sessile animal, mussels likely evolved the capability to rapidly gain and slowly lose heat tolerance to survive the intermittent, and often unpredictable, heat events in the intertidal zone. This adaptive strategy will likely prove beneficial under the extreme heat events predicted with climate change. 
    more » « less
  4. ABSTRACT Gene regulatory networks (GRNs) are critical for dynamic transcriptional responses to environmental stress. However, the mechanisms by which GRN regulation adjusts physiology to enable stress survival remain unclear. Here we investigate the functions of transcription factors (TFs) within the global GRN of the stress-tolerant archaeal microorganism Halobacterium salinarum . We measured growth phenotypes of a panel of TF deletion mutants in high temporal resolution under heat shock, oxidative stress, and low-salinity conditions. To quantitate the noncanonical functional forms of the growth trajectories observed for these mutants, we developed a novel modeling framework based on Gaussian process regression and functional analysis of variance (FANOVA). We employ unique statistical tests to determine the significance of differential growth relative to the growth of the control strain. This analysis recapitulated known TF functions, revealed novel functions, and identified surprising secondary functions for characterized TFs. Strikingly, we observed that the majority of the TFs studied were required for growth under multiple stress conditions, pinpointing regulatory connections between the conditions tested. Correlations between quantitative phenotype trajectories of mutants are predictive of TF-TF connections within the GRN. These phenotypes are strongly concordant with predictions from statistical GRN models inferred from gene expression data alone. With genome-wide and targeted data sets, we provide detailed functional validation of novel TFs required for extreme oxidative stress and heat shock survival. Together, results presented in this study suggest that many TFs function under multiple conditions, thereby revealing high interconnectivity within the GRN and identifying the specific TFs required for communication between networks responding to disparate stressors. IMPORTANCE To ensure survival in the face of stress, microorganisms employ inducible damage repair pathways regulated by extensive and complex gene networks. Many archaea, microorganisms of the third domain of life, persist under extremes of temperature, salinity, and pH and under other conditions. In order to understand the cause-effect relationships between the dynamic function of the stress network and ultimate physiological consequences, this study characterized the physiological role of nearly one-third of all regulatory proteins known as transcription factors (TFs) in an archaeal organism. Using a unique quantitative phenotyping approach, we discovered functions for many novel TFs and revealed important secondary functions for known TFs. Surprisingly, many TFs are required for resisting multiple stressors, suggesting cross-regulation of stress responses. Through extensive validation experiments, we map the physiological roles of these novel TFs in stress response back to their position in the regulatory network wiring. This study advances understanding of the mechanisms underlying how microorganisms resist extreme stress. Given the generality of the methods employed, we expect that this study will enable future studies on how regulatory networks adjust cellular physiology in a diversity of organisms. 
    more » « less
  5. Abstract

    Climate change is resulting in increasing ocean temperatures and salinity variability, particularly in estuarine environments. Tolerance of temperature and salinity change interact and thus may impact organismal resilience. Populations can respond to multiple stressors in the short‐term (i.e., plasticity) or over longer timescales (i.e., adaptation). However, little is known about the short‐ or long‐term effects of elevated temperature on the tolerance of acute temperature and salinity changes. Here, we characterized the response of the near‐shore and estuarine copepod,Acartia tonsa, to temperature and salinity stress. Copepods originated from one of two sets of replicated >40 generation‐old temperature‐adapted lines: ambient (AM, 18°C) and ocean warming (OW, 22°C). Copepods from these lines were subjected to one and three generations at the reciprocal temperature. Copepods from all treatments were then assessed for differences in acute temperature and salinity tolerance. Development (one generation), three generations, and >40 generations of warming increased thermal tolerance compared to Ambient conditions, with development in OW resulting in equal thermal tolerance to three and >40 generations of OW. Strikingly, developmental OW and >40 generations of OW had no effect on low salinity tolerance relative to ambient. By contrast, when environmental salinity was reduced first, copepods had lower thermal tolerances. These results highlight the critical role for plasticity in the copepod climate response and suggest that salinity variability may reduce copepod tolerance to subsequent warming.

     
    more » « less