skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Title: Skillful Long‐Lead Prediction of Summertime Heavy Rainfall in the US Midwest From Sea Surface Salinity
Abstract

Summertime heavy rainfall and its resultant floods are among the most harmful natural hazards in the US Midwest, one of the world's primary crop production areas. However, seasonal forecasts of heavy rain, currently based on preseason sea surface temperature anomalies (SSTAs), remain unsatisfactory. Here, we present evidence that sea surface salinity anomalies (SSSAs) over the tropical western Pacific and subtropical North Atlantic are skillful predictors of summer time heavy rainfall one season ahead. A one standard deviation change in tropical western Pacific SSSA is associated with a 1.8 mm day−1increase in local precipitation, which excites a teleconnection pattern to extratropical North Pacific. Via extratropical air‐sea interaction and long memory of midlatitude SSTA, a wave train favorable for US Midwest heavy rain is induced. Combined with soil moisture feedbacks bridging the springtime North Atlantic salinity, the SSSA‐based statistical prediction model improves Midwest heavy rainfall forecasts by 92%, complementing existing SSTA‐based frameworks.

 
more » « less
Award ID(s):
1663704
PAR ID:
10370192
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
49
Issue:
13
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This study illustrates the considerable improvement in accuracy achievable for long‐lead forecasts (18 months) of the Ocean Niño Index (ONI) through the utilization of a long short‐term memory (LSTM) machine learning algorithm. The research assesses the predictive potential of eight predictors from both tropical and extratropical regions constructed based on sea surface temperature, outgoing longwave radiation, sea surface height and zonal and meridional wind anomalies. In comparison to linear regression model forecasts, the LSTM model outperforms them for both the tropical and extratropical predictor sets. Among all the predictors, the western North Pacific (WNP) index demonstrates the highest prediction skill in ONI forecasts, followed by the North Tropical Atlantic (NTA) index and then the sea surface height index. While other predictors help the LSTM model to forecast either the phase variation of the amplitude variation of the observed ONI, the extratropical WNP predictor enables the LSTM model to forecast both variations. This superiority can be attributed to the involvement of SST anomalies in the WNP region in both tropical and extratropical El Niño–Southern Oscillation (ENSO) dynamics, allowing for the utilization of predictive potential from both components of ENSO dynamics. The study also concludes that the extratropical ENSO dynamics provide a robust source of predictability for long‐lead ENSO forecasts, which can be effectively harnessed using the LSTM model.

     
    more » « less
  2. Abstract

    The season‐dependent impacts of the tropical North Atlantic (TNA) sea surface temperature anomaly (SSTA) on subsequent El Niño‐Southern Oscillation (ENSO) evolution were investigated through observational and modeling studies. The results indicate that, although the maximum amplitude of the TNA SSTA occurs during boreal spring, the TNA SSTA in boreal summer generates a stronger rainfall response in situ, which can further induce a significantly stronger zonal wind anomaly over the equatorial western Pacific via Kelvin and Rossby wave processes. The cause of a stronger precipitation response in boreal summer is attributed to the northward migration of the climatological Atlantic warm pool and the Inter‐Tropical Convergence Zone. Idealized Coupled General Circulation Model experiments further demonstrate that a persisting TNA SSTA forcing up to boreal summer is critical in conveying the TNA impact to subsequent ENSO evolutions in the Pacific.

     
    more » « less
  3. Abstract

    Previous studies suggested that fast‐decay El Niño events are more favorable in generating the western North Pacific anticyclone (WNPAC) in the decaying summer. However, we found that this is not the case for all fast‐decay El Niño events. By comparing two groups of fast‐decay El Niño events with significant and insignificant WNPAC in the following summer, we found that the westward extension of the equatorial Pacific cold sea surface temperature anomalies (SSTA) and the subtropical central‐north Pacific cold SSTA play important roles in the generation and intensification of the WNPAC during decaying summer. Further analyses indicated that the internal atmospheric mode—North Pacific Oscillation during boreal spring can affect the formation of the cold SSTA over the subtropical central‐north Pacific and the westward extension of the equatorial Pacific cold SSTA during summer. Additional effects of tropical Indian and Atlantic forcing on the maintenance of the WNPAC are also shown.

     
    more » « less
  4. Abstract

    El Niño–Southern Oscillation (ENSO), the dominant mode of interannual variability in the tropical Pacific, is well known to affect the extratropical climate via atmospheric teleconnections. Extratropical atmospheric variability may in turn influence the occurrence of ENSO events. The winter North Pacific Oscillation (NPO), as the secondary dominant mode of atmospheric variability over the North Pacific, has been recognized as a potential precursor for ENSO development. This study demonstrates that the preexisting winter NPO signal is primarily excited by sea surface temperature (SST) anomalies in the equatorial western–central Pacific. During ENSO years with a preceding winter NPO signal, which accounts for approximately 60% of ENSO events observed in 1979–2021, significant SST anomalies emerge in the equatorial western–central Pacific in the preceding autumn and winter. The concurrent presence of local convection anomalies can act as a catalyst for NPO-like atmospheric circulation anomalies. In contrast, during other ENSO years, significant SST anomalies are not observed in the equatorial western–central Pacific during the preceding winter, and correspondingly, the NPO signal is absent. Ensemble simulations using an atmospheric general circulation model driven by observed SST anomalies in the tropical western–central Pacific can well reproduce the interannual variability of observed NPO. Therefore, an alternative explanation for the observed NPO–ENSO relationship is that the preceding winter NPO is a companion to ENSO development, driven by the precursory SST signal in the equatorial western–central Pacific. Our results suggest that the lagged relationship between ENSO and the NPO involves a tropical–extratropical two-way coupling rather than a purely stochastic forcing of the extratropical atmosphere on ENSO.

     
    more » « less
  5. Abstract

    Rainfall in southern California is highly variable, with some fluctuations explainable by climate patterns. Resulting runoff and heightened streamflow from rain events introduces freshwater plumes into the coastal ocean. Here we use a 105-year daily sea surface salinity record collected at Scripps Pier in La Jolla, California to show that El Niño Southern Oscillation and Pacific Decadal Oscillation both have signatures in coastal sea surface salinity. Averaging the freshest quantile of sea surface salinity over each year’s winter season provides a useful metric for connecting the coastal ocean to interannual winter rainfall variability, through the influence of freshwater plumes originating, at closest, 7.5 km north of Scripps Pier. This salinity metric has a clear relationship with dominant climate phases: negative Pacific Decadal Oscillation and La Niña conditions correspond consistently with lack of salinity anomaly/ dry winters. Fresh salinity anomalies (i.e., wet winters) occur during positive phase Pacific Decadal Oscillation and El Niño winters, although not consistently. This analysis emphasizes the strong influence that precipitation and consequent streamflow has on the coastal ocean, even in a region of overall low freshwater input, and provides an ocean-based metric for assessing decadal rainfall variability.

     
    more » « less