skip to main content


Title: Structural and Optical Properties of High Entropy (La,Lu,Y,Gd,Ce)AlO 3 Perovskite Thin Films
Abstract

Mixtures of Ce‐doped rare‐earth aluminum perovskites are drawing a significant amount of attention as potential scintillating devices. However, the synthesis of complex perovskite systems leads to many challenges. Designing the A‐site cations with an equiatomic ratio allows for the stabilization of a single‐crystal phase driven by an entropic regime. This work describes the synthesis of a highly epitaxial thin film of configurationally disordered rare‐earth aluminum perovskite oxide (La0.2Lu0.2Y0.2Gd0.2Ce0.2)AlO3and characterizes the structural and optical properties. The thin films exhibit three equivalent epitaxial domains having an orthorhombic structure resulting from monoclinic distortion of the perovskite cubic cell. An excitation of 286.5 nm from Gd3+and energy transfer to Ce3+with 405 nm emission are observed, which represents the potential for high‐energy conversion. These experimental results also offer the pathway to tunable optical properties of high‐entropy rare‐earth epitaxial perovskite films for a range of applications.

 
more » « less
Award ID(s):
2016453 1902644 1902623
NSF-PAR ID:
10370198
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
9
Issue:
29
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metamaterials have gained great research interest in recent years owing to their potential for property tunability, multifunctionality, and property coupling. As a new group of self‐assembled thin films, vertically aligned nanocomposite (VAN)‐based hybrid metamaterials have been demonstrated with significant anisotropic physical properties and a broad range of property tailorability, such as optical anisotropy, magnetic anisotropy, hyperbolic dispersion, and enhanced second harmonic generation properties. Herein, self‐assembled ZrO2‐Co nanocomposite films, with high epitaxial quality and ultra‐fine vertically aligned Co nanopillars (with an average diameter of ≈2 nm) embedded in a ZrO2matrix, are fabricated using a pulsed laser deposition (PLD) method. The Co pillar density can be effectively tuned by varying the Co concentration in the target, which results in tunable optical properties and magnetic properties. Specifically, a high saturation magnetization of 100 emu cm−3, strong out‐of‐plane magnetic anisotropy and tailorable magnetization properties are achieved via tuning the Co nanopillar density. Coupled with hyperbolic dispersion of dielectric constant from 950 to 1500 nm in wavelength, plasmonic Co metal nanopillars, and the unique dielectric ZrO2matrix, this new nanoscale hybrid metamaterial shows great potential for future integrated optical and magnetic device designs.

     
    more » « less
  2. Abstract

    BaTiO3is a technologically relevant material in the perovskite oxide class with above‐room‐temperature ferroelectricity and a very large electro‐optical coefficient, making it highly suitable for emerging electronic and photonic devices. An easy, robust, straightforward, and scalable growth method is required to synthesize epitaxial BaTiO3thin films with sufficient control over the film's stoichiometry to achieve reproducible thin film properties. Here the growth of BaTiO3thin films by hybrid molecular beam epitaxy is reported. A self‐regulated growth window is identified using complementary information obtained from reflection high energy electron diffraction, the intrinsic film lattice parameter, film surface morphology, and scanning transmission electron microscopy. Subsequent optical characterization of the BaTiO3films by spectroscopic ellipsometry revealed refractive index and extinction coefficient values closely resembling those of stoichiometric bulk BaTiO3crystals for films grown inside the growth window. Even in the absence of a lattice parameter change of BaTiO3thin films, degradation of optical properties is observed, accompanied by the appearance of a wide optical absorption peak in the IR spectrum, attributed to optical transitions involving defect states present. Therefore, the optical properties of BaTiO3can be utilized as a much finer and more straightforward probe to determine the stoichiometry level present in BaTiO3films.

     
    more » « less
  3. null (Ed.)
    Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics. 
    more » « less
  4. Abstract

    This work characterizes the structural, magnetic, and ferroelectric properties of epitaxial LuFeO3orthoferrite thin films with different Lu/Fe ratios. LuFeO3thin films are grown by pulsed laser deposition on SrTiO3substrates with Lu/Fe ratio ranging from 0.6 to 1.5. LuFeO3is antiferromagnetic with a weak canted moment perpendicular to the film plane. Piezoresponse force microscopy imaging and switching spectroscopy reveal room temperature ferroelectricity in Lu‐rich and Fe‐rich films, whereas the stoichiometric film shows little polarization. Ferroelectricity in Lu‐rich films is present for a range of deposition conditions and crystallographic orientations. Positive‐up‐negative‐down ferroelectric measurements on a Lu‐rich film yield ≈13 µC cm−2of switchable polarization, although the film also shows electrical leakage. The ferroelectric response is attributed to antisite defects analogous to that of Y‐rich YFeO3, yielding multiferroicity via defect engineering in a rare earth orthoferrite.

     
    more » « less
  5. Abstract

    We report the pulsed‐laser deposition of epitaxial double‐perovskite Bi2FeCrO6(BFCO) films on the (001)‐, (110), and (111)‐oriented single‐crystal SrTiO3substrates. All of the BFCO films with various orientations show theandsuperlattice‐diffraction peaks. The intensity ratios between the‐superlattice and the main 111‐diffraction peak can be tailored by simply adjusting the laser repetition rate and substrate temperature, reaching up to 4.4%. However, both optical absorption spectra and magnetic measurements evidence that the strong superlattice peaks are not correlated with theB‐site Fe3+/Cr3+cation ordering. Instead, the epitaxial (111)‐oriented Bi2FeCrO6films show an enhanced remanent polarization of 92 μC/cm2at 10 K, much larger than the predicted values by density‐functional theory calculations. Positive‐up‐negative‐down (PUND) measurements with a time interval of 10 μs further support these observations. Therefore, our experimental results reveal that the strong superlattice peaks may come fromA‐ orB‐site cation shifts along the pseudo‐cubic [111] direction, which further enhance the ferroelectric polarization of the BFCO thin films.

     
    more » « less