skip to main content

Title: Excitation of surface plasmon polaritons by diffraction-free and vector beams

Surface plasmon polaritons (SPPs) are traditionally excited by plane waves within the Rayleigh range of a focused transverse-magnetic (TM) Gaussian beam. Here we investigate and confirm the coupling between SPPs and two-dimensional Gaussian and Bessel–Gauss wave packets, as well as one-dimensional light sheets and space-time wave packets. We encode the incoming wavefronts with spatially varying states of polarization; then we couple the respective TM components of radial and azimuthal vector beam profiles to confirm polarization-correlation and spatial-mode selectivity. Our results do not require material optimization or multi-dimensional confinement via periodically corrugated metal surfaces to achieve coupling at a greater extent, hereby outlining a pivotal, yet commonly overlooked, path towards the development of long-range biosensors and all-optical integrated plasmonic circuits.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. 7469
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Periodic diffractive elements known as metasurfaces constitute platform technology whereby exceptional optical properties, not attainable by conventional means, are attained. Generally, with increasing unit-cell complexity, there emerges a wider design space and bolstered functional capability. Advanced devices deploying elaborate unit cells are typically generated by electron-beam patterning which is a tedious, slow process not suitable for large surfaces and quick turnaround. Ameliorating this condition, we present a novel route towards facile fabrication of complex periodic metasurfaces based on sequential exposures by laser interference lithography. Our method is fast, cost-effective, and can be applied to large surface areas. It is enabled by precise control over periodicity and exposure energy. With it we have successfully patterned and fabricated one-dimensional (1D) and two-dimensional (2D) multipart unit cell devices as demonstrated here. Thus, zero-order transmission spectra of an etched four-part 1D grating device are simulated and measured for both transverse-electric (TE) and transverse-magnetic (TM) polarization states of normally incident light. We confirm non-resonant wideband antireflection (∼800 nm) for TM-polarized light and resonance response for TE-polarized light in the near-IR band spanning 1400-2200 nm in a ∼100 mm2device. Furthermore, it is shown that this method of fabrication can be implemented not only to pattern periodic symmetric/asymmetric designs but also to realize non-periodic metasurfaces. The method will be useful in production of large-area photonic devices in the realm of nanophotonics and microphotonics.

    more » « less
  2. In this Letter, we present a high extinction ratio and compact on-chip polarization beam splitter (PBS), based on an extreme skin-depth (eskid) waveguide. Subwavelength-scale gratings form an effectively anisotropic metamaterial cladding and introduce a large birefringence. The anisotropic dielectric perturbation of the metamaterial cladding suppresses the TE polarization extinction via exceptional coupling, while the large birefringence efficiently cross-couples the TM mode, thus reducing the coupling length. We demonstrated the eskid-PBS on a silicon-on-insulator platform and achieved an ultra-high extinction ratio PBS (≈<#comment/>60dBfor TE and≈<#comment/>48dBfor TM) with a compact coupling length (≈<#comment/>14.5µ<#comment/>m). The insertion loss is also negligible (<<#comment/>0.6dB). The bandwidth is><#comment/>80(30) nm for the TE (TM) extinction ratio><#comment/>20dB. Our ultra-high extinction ratio PBS is crucial in implementing efficient polarization diversity circuits, especially where a high degree of polarization distinguishability is necessary, such as photonic quantum information processing.

    more » « less
  3. We present polarization-free Bragg filters having subwavelength gratings (SWGs) in the lateral cladding region. This Bragg design expands modal fields toward upper cladding, resulting in enhanced light interaction with sensing analytes. Two device configurations are proposed and examined, one with index-matched coupling between transverse electric (TE) and transverse magnetic (TM) modes and the other one with hybrid-mode (HM) coupling. Both configurations introduce a strong coupling between two orthogonal modes (either TE-TM or HM1-HM2) and rotate the polarization of the input wave through Bragg reflection. The arrangements of SWGs help to achieve two configurations with different orthogonal modes, while expanding modal profiles toward the upper cladding region. Our proposed SWG-assisted Bragg gratings with polarization independency eliminate the need for a polarization controller and effectively tailor the modal properties, enhancing the potential of integrated photonic sensing applications.

    more » « less
  4. Raynal, Ann M. ; Ranney, Kenneth I. (Ed.)
    Control of orbital angular momentum (OAM) offers the potential for increases in control, sensitivity, and security for high-performance microwave systems. OAM is characterized by an integer OAM mode where zero represents the case of a plane wave. Microwaves with a nonzero OAM mode propagate with a helical wavefront. Orthogonal OAM modes can be used to carry distinct information at the same frequency and polarization, increasing the data rate. The OAM waveform may also increase radar detection capability for certain shaped objects. OAM can be induced by broadcasting a plane wave through a spatial phase plate (SPP) dielectric which introduces an azimuthally dependent phase delay. However, SPPs are frequency-specific, which presents an obstacle for harnessing OAM in frequency-modulated communication systems and wide-bandwidth radar. In this study, we develop a circular phased array to synthesize the desired vortex-shaped wavefront. This approach offers a critical advantage: the phases of all antenna elements are easily programmable under different frequencies. As a result, transmission and reception of the OAM beam can be controlled with great flexibility, making it operable over a wide frequency spectrum, which leverages OAM radar functionality and performance. In this paper, we will investigate a wide-bandwidth radar with OAM mode-control and signal processing. 
    more » « less
  5. We present an ultra-high extinction-ratio silicon photonic polarization beam splitter with anisotropic metamaterial claddings. Exceptional coupling with anisotropic metamaterial achieved 58- 60 dB (46-48 dB) extinction-ratios for TE (TM) mode and the large birefringence resulted in a short coupling length (14.5 µm).

    more » « less