This study examines a three-dimensional, anisotropic multistability of a mechanical meta material based on a stacked Miura-ori architecture, and investigates how such a unique stability property can impart stiffness and effective modulus programming functions. The unit cell of this metamaterial can be bistable due to the nonlinear relationship between rigid-folding and crease material bending. Such bistability possesses an unorthodox property: the arrangement of elastically stable and unstable equilibria are different along different principal axes of the unit cell, so that along certain axes the unit cell exhibits two force–deformation relationships concurrently within the same range of deformation. Therefore, one can achieve a notable stiffness adaptation via switching between the two stable states. As multiple unit cells are assembled into a metamaterial, the stiffness adaptation can be aggregated into an on-demand modulus programming capability. That is, via strategically switching different unit cells between stable states, one can control the overall effective modulus. This research examines the underlying principles of anisotropic multistability, experimentally validates the feasibility of stiffness adaptation, and conducts parametric analyses to reveal the correlations between the effective modulus programming and Miura-ori designs. The results can advance many adaptive systems such as morphing structures and soft robotics.
more »
« less
Inflatable Origami: Multimodal Deformation via Multistability
Abstract Inflatable structures have become essential components in the design of soft robots and deployable systems as they enable dramatic shape change from a single pressure inlet. This simplicity, however, often brings a strict limitation: unimodal deformation upon inflation. Here, multistability is embraced to design modular, inflatable structures that can switch between distinct deformation modes as a response to a single input signal. This system comprises bistable origami modules in which pressure is used to trigger a snap‐through transition between a state of deformation characterized by simple deployment to a state characterized by bending deformation. By assembling different modules and tuning their geometry to cause snapping at different pressure thresholds, structures capable of complex deformations that can be pre‐programmed and activated using only one pressure source are created. This approach puts forward multistability as a paradigm to eliminate a one‐to‐one relation between input signal and deformation mode in inflatable systems.
more »
« less
- Award ID(s):
- 1922321
- PAR ID:
- 10370260
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 32
- Issue:
- 35
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design.more » « less
-
Regular user interface screens can display dense and detailed information to human users but miss out on providing somatosensory stimuli that take full advantage of human spatial cognition. Therefore, the development of new haptic displays can strengthen human-machine communication by augmenting visual communication with tactile stimulation needed to transform information from digital to spatial/physical environments. Shape-changing interfaces, such as pin arrays and robotic surfaces, are one method for providing this spatial dimension of feedback; however, these displays are often either limited in maximum extension or require bulky mechanical components. In this paper, we present a compact pneumatically actuated soft growing pin for inflatable haptic interfaces. Each pin consists of a rigid, air-tight chamber, an inflatable fabric pin, and a passive spring-actuated reel mechanism. The device behavior was experimentally characterized, showing extension to 18.5 cm with relatively low pressure input (1.75 psi, 12.01 kPa), and the behavior was compared to the mathematical model of soft growing robots. The results showed that the extension of the soft pin can be accurately modeled and controlled using pressure as input. Finally, we demonstrate the feasibility of implementing individually actuated soft growing pins to create an inflatable haptic surface.more » « less
-
Textile-based compression devices are widely used in fields such as healthcare, astronautics, cosmetics, defense, and more. While traditional compression garments are only able to apply passive pressure on the body, there have been some efforts to integrate smart materials such as shape memory alloys (SMAs) to make compression garments active and controllable. However, despite the advances in this field, accurate control of applied pressure on the body due remains a challenge due to vast population-scale anthropometric variability and intra-subjects variability in tissue softness, even if the actuators themselves are fully characterized. In this study, we begin to address these challenges by developing a novel size-adjustable SMA-based smart tourniquet capable of producing a controllable pressure for circumferential applications. The developed prototype was tested on an inflatable pressure cuff wrapped around a rigid cylinder. The thermal activation of SMA coils was achieved through Joule heating, and a microcontroller and a programmable power supply are used to provide the input signal. To control the compression force, a closed-loop PID controller was implemented, and the performance of the system was evaluated in 5 different testing conditions for variable and cyclic compression levels. The experiments showed that the controlled system could follow the desired control pressure reference with a steady-state of 1 mmHg. The compression tourniquet is able to produce more than 33 mmHg with an average actuation rate of 0.19 mmHg/s. This is the first demonstration of accurate closed-loop control of an SMA-incorporated compression technology to the best of our knowledge. This paper enables new, dynamic systems with controllable activation and low-effort donning and doffing, with applications ranging from healthcare solutions to advanced spacesuit design.more » « less
-
Martínez-García, Edgar (Ed.)This paper presents the design, development, and testing of a robot that combines soft-body grasping and crawling locomotion to navigate tubular objects. Inspired by the natural snakes’ climbing locomotion of tubular objects, the soft robot includes proximal and distal modules with radial expansion/contraction for grasping around the objects and a longitudinal contractile–expandable driving module in-between for providing a bi-directional crawling movement along the length of the object. The robot’s grasping modules are made of fabrics, and the crawling module is made of an extensible pneumatic soft actuator (ePSA). Conceptual designs and CAD models of the robot parts, textile-based inflatable structures, and pneumatic driving mechanisms were developed. The mechanical parts were fabricated using advanced and conventional manufacturing techniques. An Arduino-based electro-pneumatic control board was developed for generating cyclic patterns of grasping and locomotion. Different reinforcing patterns and materials characterize the locomotor actuators’ dynamical responses to the varying input pressures. The robot was tested in a laboratory setting to navigate a cable, and the collected data were used to modify the designs and control software and hardware. The capability of the soft robot for navigating cables in vertical, horizontal, and curved path scenarios was successfully demonstrated. Compared to the initial design, the forward speed is improved three-fold.more » « less
An official website of the United States government
