skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: National attribution of historical climate damages
Abstract

Quantifying which nations are culpable for the economic impacts of anthropogenic warming is central to informing climate litigation and restitution claims for climate damages. However, for countries seeking legal redress, the magnitude of economic losses from warming attributable to individual emitters is not known, undermining their standing for climate liability claims. Uncertainties compound at each step from emissions to global greenhouse gas (GHG) concentrations, GHG concentrations to global temperature changes, global temperature changes to country-level temperature changes, and country-level temperature changes to economic losses, providing emitters with plausible deniability for damage claims. Here we lift that veil of deniability, combining historical data with climate models of varying complexity in an integrated framework to quantify each nation’s culpability for historical temperature-driven income changes in every other country. We find that the top five emitters (the United States, China, Russia, Brazil, and India) have collectively caused US$6 trillion in income losses from warming since 1990, comparable to 11% of annual global gross domestic product; many other countries are responsible for billions in losses. Yet the distribution of warming impacts from emitters is highly unequal: high-income, high-emitting countries have benefited themselves while harming low-income, low-emitting countries, emphasizing the inequities embedded in the causes and consequences of historical warming. By linking individual emitters to country-level income losses from warming, our results provide critical insight into climate liability and national accountability for climate policy.

 
more » « less
NSF-PAR ID:
10370281
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Climatic Change
Volume:
172
Issue:
3-4
ISSN:
0165-0009
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Anthropogenic aerosols are hazardous to human health but have helped offset warming from greenhouse gases (GHGs), creating a potential regulatory tradeoff. As countries implement their GHG reduction targets under the Paris climate agreement, the co‐emissions of aerosols and their precursors will also change. Since these co‐emissions vary by country and by economic sector, each country will face different tradeoffs between aerosol‐driven health or temperature co‐benefits. We combine simple parameterizations of physical processes and health outcomes to examine three idealized climate policy approaches that are consistent with the Paris Agreement targets, which (i) optimize for local air quality, (ii) reduce global temperature change, or (iii) reduce emissions equally from all domestic economic sectors. We evaluate aerosol impacts on premature mortality and global mean temperature change under these three policy approaches and find that by 2030 the three policies yield differences of over 1 million annual premature deaths and global temperature differences of the same magnitude as those from GHG reductions. We also show that implementing equal reductions between all economic sectors can actually result in less beneficial health and temperature outcomes than either of the other options, especially in less industrialized regions. We therefore conclude that aerosol‐related co‐benefits and aerosol accounting guidelines should be explicitly considered in setting international climate policy.

     
    more » « less
  2. Abstract

    Ecosystems generate a wide range of benefits for humans, including some market goods as well as other benefits that are not directly reflected in market activity1. Climate change will alter the distribution of ecosystems around the world and change the flow of these benefits2,3. However, the specific implications of ecosystem changes for human welfare remain unclear, as they depend on the nature of these changes, the value of the affected benefits and the extent to which communities rely on natural systems for their well-being4. Here we estimate country-level changes in economic production and the value of non-market ecosystem benefits resulting from climate-change-induced shifts in terrestrial vegetation cover, as projected by dynamic global vegetation models (DGVMs) driven by general circulation climate models. Our results show that the annual population-weighted mean global flow of non-market ecosystem benefits valued in the wealth accounts of the World Bank will be reduced by 9.2% in 2100 under the Shared Socioeconomic Pathway SSP2-6.0 with respect to the baseline no climate change scenario and that the global population-weighted average change in gross domestic product (GDP) by 2100 is −1.3% of the baseline GDP. Because lower-income countries are more reliant on natural capital, these GDP effects are regressive. Approximately 90% of these damages are borne by the poorest 50% of countries and regions, whereas the wealthiest 10% experience only 2% of these losses.

     
    more » « less
  3. A limited nuclear war between India and Pakistan could ignite fires large enough to emit more than 5 Tg of soot into the stratosphere. Climate model simulations have shown severe resulting climate perturbations with declines in global mean temperature by 1.8 °C and precipitation by 8%, for at least 5 y. Here we evaluate impacts for the global food system. Six harmonized state-of-the-art crop models show that global caloric production from maize, wheat, rice, and soybean falls by 13 (±1)%, 11 (±8)%, 3 (±5)%, and 17 (±2)% over 5 y. Total single-year losses of 12 (±4)% quadruple the largest observed historical anomaly and exceed impacts caused by historic droughts and volcanic eruptions. Colder temperatures drive losses more than changes in precipitation and solar radiation, leading to strongest impacts in temperate regions poleward of 30°N, including the United States, Europe, and China for 10 to 15 y. Integrated food trade network analyses show that domestic reserves and global trade can largely buffer the production anomaly in the first year. Persistent multiyear losses, however, would constrain domestic food availability and propagate to the Global South, especially to food-insecure countries. By year 5, maize and wheat availability would decrease by 13% globally and by more than 20% in 71 countries with a cumulative population of 1.3 billion people. In view of increasing instability in South Asia, this study shows that a regional conflict using <1% of the worldwide nuclear arsenal could have adverse consequences for global food security unmatched in modern history. 
    more » « less
  4. Abstract

    Nearly three billion people in low- and middle-income countries (LMICs) rely on polluting fuels, resulting in millions of avoidable deaths annually. Polluting fuels also emit short-lived climate forcers (SLCFs) and greenhouse gases (GHGs). Liquefied petroleum gas (LPG) and grid-based electricity are scalable alternatives to polluting fuels but have raised climate and health concerns. Here, we compare emissions and climate impacts of a business-as-usual household cooking fuel trajectory to four large-scale transitions to gas and/or grid electricity in 77 LMICs. We account for upstream and end-use emissions from gas and electric cooking, assuming electrical grids evolve according to the 2022 World Energy Outlook’s ‘Stated Policies’ Scenario. We input the emissions into a reduced-complexity climate model to estimate radiative forcing and temperature changes associated with each scenario. We find full transitions to LPG and/or electricity decrease emissions from both well-mixed GHG and SLCFs, resulting in a roughly 5 millikelvin global temperature reduction by 2040. Transitions to LPG and/or electricity also reduce annual emissions of PM2.5by over 6 Mt (99%) by 2040, which would substantially lower health risks from household air pollution. Full transitions to LPG or grid electricity in LMICs improve climate impacts over BAU trajectories.

     
    more » « less
  5. Abstract

    A comprehensive data set of extreme hydrological events (EHEs)—floods and droughts, consisting of 2,171 occurrences worldwide, during 1960‐2014 was compiled, and then their economic losses were normalized using a price index in U.S. dollar. The data set showed a significant increasing trend of EHEs before 2000, while a slight post‐2000 decline. Correspondingly, the EHE‐caused economic losses increased obviously before 2000 followed by a slight decrease; the post‐2000 decline could be partially attributed to the decreases in drought and flood‐prone area or climate adaptation practices. Spatially, Asia experienced most EHEs (969), corresponding to the largest share of economic losses (approximately $868 billion for floods and $50 billion for droughts, respectively), while Oceania had the least EHEs (102) and the least economic losses (approximately $19 billion for floods and $45 billion for droughts). The five countries with the highest EHE‐caused economic losses were China, United States, Canada, Australia, and India. Countries that suffered the highest flood‐caused economic losses were China, United States, and Canada. This data set provides a quantitative linkage between climate science and economic losses at a global scale, and it is beneficial for the regional climatic impact assessments and strategical development for mitigating climate change impacts.

     
    more » « less