skip to main content


Title: Impact of individual and treatment characteristics on wearable sensor-based digital biomarkers of opioid use
Abstract

Opioid use disorder is one of the most pressing public health problems of our time. Mobile health tools, including wearable sensors, have great potential in this space, but have been underutilized. Of specific interest are digital biomarkers, or end-user generated physiologic or behavioral measurements that correlate with health or pathology. The current manuscript describes a longitudinal, observational study of adult patients receiving opioid analgesics for acute painful conditions. Participants in the study are monitored with a wrist-worn E4 sensor, during which time physiologic parameters (heart rate/variability, electrodermal activity, skin temperature, and accelerometry) are collected continuously. Opioid use events are recorded via electronic medical record and self-report. Three-hundred thirty-nine discreet dose opioid events from 36 participant are analyzed among 2070 h of sensor data. Fifty-one features are extracted from the data and initially compared pre- and post-opioid administration, and subsequently are used to generate machine learning models. Model performance is compared based on individual and treatment characteristics. The best performing machine learning model to detect opioid administration is a Channel-Temporal Attention-Temporal Convolutional Network (CTA-TCN) model using raw data from the wearable sensor. History of intravenous drug use is associated with better model performance, while middle age, and co-administration of non-narcotic analgesia or sedative drugs are associated with worse model performance. These characteristics may be candidate input features for future opioid detection model iterations. Once mature, this technology could provide clinicians with actionable data on opioid use patterns in real-world settings, and predictive analytics for early identification of opioid use disorder risk.

 
more » « less
Award ID(s):
2124282
NSF-PAR ID:
10370298
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Digital Medicine
Volume:
5
Issue:
1
ISSN:
2398-6352
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Opioid use disorder is a medical condition with major social and economic consequences. While ubiquitous physiological sensing technologies have been widely adopted and extensively used to monitor day-to-day activities and deliver targeted interventions to improve human health, the use of these technologies to detect drug use in natural environments has been largely underexplored. The long-term goal of our work is to develop a mobile technology system that can identify high-risk opioid-related events (i.e., development of tolerance in the setting of prescription opioid use, return-to-use events in the setting of opioid use disorder) and deploy just-in-time interventions to mitigate the risk of overdose morbidity and mortality. In the current paper, we take an initial step by asking a crucial question: Can opioid use be detected using physiological signals obtained from a wrist-mounted sensor? Thirty-six individuals who were admitted to the hospital for an acute painful condition and received opioid analgesics as part of their clinical care were enrolled. Subjects wore a noninvasive wrist sensor during this time (1-14 days) that continuously measured physiological signals (heart rate, skin temperature, accelerometry, electrodermal activity, and interbeat interval). We collected a total of 2070 hours (≈ 86 days) of physiological data and observed a total of 339 opioid administrations. Our results are encouraging and show that using a Channel-Temporal Attention TCN (CTA-TCN) model, we can detect an opioid administration in a time-window with an F1-score of 0.80, a specificity of 0.77, sensitivity of 0.80, and an AUC of 0.77. We also predict the exact moment of administration in this time-window with a normalized mean absolute error of 8.6% and R2 coefficient of 0.85. 
    more » « less
  2. Li-Jessen, Nicole Yee-Key (Ed.)
    The Earable device is a behind-the-ear wearable originally developed to measure cognitive function. Since Earable measures electroencephalography (EEG), electromyography (EMG), and electrooculography (EOG), it may also have the potential to objectively quantify facial muscle and eye movement activities relevant in the assessment of neuromuscular disorders. As an initial step to developing a digital assessment in neuromuscular disorders, a pilot study was conducted to determine whether the Earable device could be utilized to objectively measure facial muscle and eye movements intended to be representative of Performance Outcome Assessments, (PerfOs) with tasks designed to model clinical PerfOs, referred to as mock-PerfO activities. The specific aims of this study were: To determine whether the Earable raw EMG, EOG, and EEG signals could be processed to extract features describing these waveforms; To determine Earable feature data quality, test re-test reliability, and statistical properties; To determine whether features derived from Earable could be used to determine the difference between various facial muscle and eye movement activities; and, To determine what features and feature types are important for mock-PerfO activity level classification. A total of N = 10 healthy volunteers participated in the study. Each study participant performed 16 mock-PerfOs activities, including talking, chewing, swallowing, eye closure, gazing in different directions, puffing cheeks, chewing an apple, and making various facial expressions. Each activity was repeated four times in the morning and four times at night. A total of 161 summary features were extracted from the EEG, EMG, and EOG bio-sensor data. Feature vectors were used as input to machine learning models to classify the mock-PerfO activities, and model performance was evaluated on a held-out test set. Additionally, a convolutional neural network (CNN) was used to classify low-level representations of the raw bio-sensor data for each task, and model performance was correspondingly evaluated and compared directly to feature classification performance. The model’s prediction accuracy on the Earable device’s classification ability was quantitatively assessed. Study results indicate that Earable can potentially quantify different aspects of facial and eye movements and may be used to differentiate mock-PerfO activities. Specially, Earable was found to differentiate talking, chewing, and swallowing tasks from other tasks with observed F1 scores >0.9. While EMG features contribute to classification accuracy for all tasks, EOG features are important for classifying gaze tasks. Finally, we found that analysis with summary features outperformed a CNN for activity classification. We believe Earable may be used to measure cranial muscle activity relevant for neuromuscular disorder assessment. Classification performance of mock-PerfO activities with summary features enables a strategy for detecting disease-specific signals relative to controls, as well as the monitoring of intra-subject treatment responses. Further testing is needed to evaluate the Earable device in clinical populations and clinical development settings. 
    more » « less
  3. Background:

    Homelessness is an important social determinant of health (SDOH), impacting health outcomes for many medical conditions. Although homelessness is common among people with opioid use disorder (OUD), few studies systematically evaluate homelessness and other SDOH among people enrolled in standard of care treatment for OUD, medication for opioid use disorder (MOUD), or examine whether homelessness affects treatment engagement.

    Methods:

    Using data from the 2016 to 2018 U.S. Treatment Episode Dataset Discharges (TEDS-D), patient demographic, social, and clinical characteristics were compared between episodes of outpatient MOUD where homelessness was reported at treatment enrollment versus independent housing using pairwise tests adjusted for multiple testing. A logistic regression model examined the relationship between homelessness and treatment length and treatment completion while accounting for covariates.

    Results:

    There were 188 238 eligible treatment episodes. Homelessness was reported in 17 158 episodes (8.7%). In pairwise analysis, episodes involving homelessness were significantly different from those involving independent living on most demographic, social, and clinical characteristics, with significantly greater social vulnerability in most SDOH variables ( P’s < .05). Homelessness was significantly and negatively associated with treatment completion (coefficient = −0.0853, P < 0.001, 95% CI = [−0.114, −0.056], OR = 0.918) and remaining in treatment for greater than 180 days (coefficient = −0.3435, P < 0.001, 95% CI = [−0.371, −0.316], OR = 0.709) after accounting for covariates.

    Conclusions:

    Patients reporting homelessness at treatment entry in outpatient MOUD in the U.S. represent a clinically distinct and socially vulnerable population from those not reporting homelessness. Homelessness independently predicts poorer engagement in MOUD confirming that homelessness may be an independent predictor for MOUD treatment discontinuation nationally.

     
    more » « less
  4. Abstract STUDY QUESTION

    Can we derive adequate models to predict the probability of conception among couples actively trying to conceive?

    SUMMARY ANSWER

    Leveraging data collected from female participants in a North American preconception cohort study, we developed models to predict pregnancy with performance of ∼70% in the area under the receiver operating characteristic curve (AUC).

    WHAT IS KNOWN ALREADY

    Earlier work has focused primarily on identifying individual risk factors for infertility. Several predictive models have been developed in subfertile populations, with relatively low discrimination (AUC: 59–64%).

    STUDY DESIGN, SIZE, DURATION

    Study participants were female, aged 21–45 years, residents of the USA or Canada, not using fertility treatment, and actively trying to conceive at enrollment (2013–2019). Participants completed a baseline questionnaire at enrollment and follow-up questionnaires every 2 months for up to 12 months or until conception. We used data from 4133 participants with no more than one menstrual cycle of pregnancy attempt at study entry.

    PARTICIPANTS/MATERIALS, SETTING, METHODS

    On the baseline questionnaire, participants reported data on sociodemographic factors, lifestyle and behavioral factors, diet quality, medical history and selected male partner characteristics. A total of 163 predictors were considered in this study. We implemented regularized logistic regression, support vector machines, neural networks and gradient boosted decision trees to derive models predicting the probability of pregnancy: (i) within fewer than 12 menstrual cycles of pregnancy attempt time (Model I), and (ii) within 6 menstrual cycles of pregnancy attempt time (Model II). Cox models were used to predict the probability of pregnancy within each menstrual cycle for up to 12 cycles of follow-up (Model III). We assessed model performance using the AUC and the weighted-F1 score for Models I and II, and the concordance index for Model III.

    MAIN RESULTS AND THE ROLE OF CHANCE

    Model I and II AUCs were 70% and 66%, respectively, in parsimonious models, and the concordance index for Model III was 63%. The predictors that were positively associated with pregnancy in all models were: having previously breastfed an infant and using multivitamins or folic acid supplements. The predictors that were inversely associated with pregnancy in all models were: female age, female BMI and history of infertility. Among nulligravid women with no history of infertility, the most important predictors were: female age, female BMI, male BMI, use of a fertility app, attempt time at study entry and perceived stress.

    LIMITATIONS, REASONS FOR CAUTION

    Reliance on self-reported predictor data could have introduced misclassification, which would likely be non-differential with respect to the pregnancy outcome given the prospective design. In addition, we cannot be certain that all relevant predictor variables were considered. Finally, though we validated the models using split-sample replication techniques, we did not conduct an external validation study.

    WIDER IMPLICATIONS OF THE FINDINGS

    Given a wide range of predictor data, machine learning algorithms can be leveraged to analyze epidemiologic data and predict the probability of conception with discrimination that exceeds earlier work.

    STUDY FUNDING/COMPETING INTEREST(S)

    The research was partially supported by the U.S. National Science Foundation (under grants DMS-1664644, CNS-1645681 and IIS-1914792) and the National Institutes for Health (under grants R01 GM135930 and UL54 TR004130). In the last 3 years, L.A.W. has received in-kind donations for primary data collection in PRESTO from FertilityFriend.com, Kindara.com, Sandstone Diagnostics and Swiss Precision Diagnostics. L.A.W. also serves as a fibroid consultant to AbbVie, Inc. The other authors declare no competing interests.

    TRIAL REGISTRATION NUMBER

    N/A.

     
    more » « less
  5. Background

    As mobile health (mHealth) studies become increasingly productive owing to the advancements in wearable and mobile sensor technology, our ability to monitor and model human behavior will be constrained by participant receptivity. Many health constructs are dependent on subjective responses, and without such responses, researchers are left with little to no ground truth to accompany our ever-growing biobehavioral data. This issue can significantly impact the quality of a study, particularly for populations known to exhibit lower compliance rates. To address this challenge, researchers have proposed innovative approaches that use machine learning (ML) and sensor data to modify the timing and delivery of surveys. However, an overarching concern is the potential introduction of biases or unintended influences on participants’ responses when implementing new survey delivery methods.

    Objective

    This study aims to demonstrate the potential impact of an ML-based ecological momentary assessment (EMA) delivery system (using receptivity as the predictor variable) on the participants’ reported emotional state. We examine the factors that affect participants’ receptivity to EMAs in a 10-day wearable and EMA–based emotional state–sensing mHealth study. We study the physiological relationships indicative of receptivity and affect while also analyzing the interaction between the 2 constructs.

    Methods

    We collected data from 45 healthy participants wearing 2 devices measuring electrodermal activity, accelerometer, electrocardiography, and skin temperature while answering 10 EMAs daily, containing questions about perceived mood. Owing to the nature of our constructs, we can only obtain ground truth measures for both affect and receptivity during responses. Therefore, we used unsupervised and supervised ML methods to infer affect when a participant did not respond. Our unsupervised method used k-means clustering to determine the relationship between physiology and receptivity and then inferred the emotional state during nonresponses. For the supervised learning method, we primarily used random forest and neural networks to predict the affect of unlabeled data points as well as receptivity.

    Results

    Our findings showed that using a receptivity model to trigger EMAs decreased the reported negative affect by >3 points or 0.29 SDs in our self-reported affect measure, scored between 13 and 91. The findings also showed a bimodal distribution of our predicted affect during nonresponses. This indicates that this system initiates EMAs more commonly during states of higher positive emotions.

    Conclusions

    Our results showed a clear relationship between affect and receptivity. This relationship can affect the efficacy of an mHealth study, particularly those that use an ML algorithm to trigger EMAs. Therefore, we propose that future work should focus on a smart trigger that promotes EMA receptivity without influencing affect during sampled time points.

     
    more » « less