skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A New Platform of B/N‐Doped Cyclophanes: Access to a π‐Conjugated Block‐Type B 3 N 3 Macrocycle with Strong Dipole Moment and Unique Optoelectronic Properties
Abstract We herein describe a new design principle to achieve B/N‐doped cyclophane where an electron‐donor block of three triarylamines (Ar3N) and an acceptor block of three triarylboranes (Ar3B) are spatially separated on opposite sides of the π‐extended ring system. DFT computations revealed the distinct electronic structure of theblock‐type macrocycleMC‐b‐B3N3with a greatly enhanced dipole moment and reduced HOMO–LUMO energy gap in comparison to its analogue with alternating B and N sites,MC‐alt‐B3N3. The unique arrangement of borane acceptor Ar3B and amine donor Ar3N components inMC‐b‐B3N3induces exceptionally strong intramolecular charge transfer in the excited state, which is reflected in a largely red‐shifted luminescence at 612 nm in solution. The respective linear open‐chain oligomerL‐b‐B3N3was also synthesized for comparison. Our new approach to donor–acceptor macrocycles offers important fundamental insights and opens up a new avenue to unique optoelectronic materials.  more » « less
Award ID(s):
1954122
PAR ID:
10370313
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
61
Issue:
20
ISSN:
1433-7851
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The silylium‐like surface species [iPr3Si][(RFO)3Al−OSi≡)] activates (N^N)Pd(CH3)Cl (N^N=Ar−N=CMeMeC=N−Ar, Ar=2,6‐bis(diphenylmethyl)‐4‐methylbenzene) by chloride ion abstraction to form [(N^N)Pd−CH3][(RFO)3Al−OSi≡)] (1). A combination of FTIR, solid‐state NMR spectroscopy, and reactions with CO or vinyl chloride establish that1shows similar reactivity patterns as (N^N)Pd(CH3)Cl activated with Na[B(ArF)4]. Multinuclear13C{27Al} RESPDOR and1H{19F} S‐REDOR experiments are consistent with a weakly coordinated ion‐pair between (N^N)Pd−CH3+and [(RFO)3Al−OSi≡)].1catalyzes the polymerization of ethylene with similar activities as [(N^N)Pd−CH3]+in solution and incorporates up to 0.4 % methyl acrylate in copolymerization reactions.1produces polymers with significantly higher molecular weight than the solution catalyst, and generates the highest molecular weight polymers currently reported in copolymerization reactions of ethylene and methylacrylate. 
    more » « less
  2. Abstract Photolyses oftrans‐Fe(CO)3(P((CH2)n)3P) (n=10 (a), 12 (b), 14 (c), 16 (d), 18 (e)) in the presence of PMe3provide the first economical and scalable route to macrobicyclic dibridgehead diphosphines P((CH2)n)3P (1). These are isolated as mixtures ofin,in/out,outisomers that equilibrate with degeneratein,out/out,inisomers at 150 °C via pyramidal inversion at phosphorus. For the entire series, VT31P NMR data establish or boundKeq, rates, and activation parameters for a variety of phenomena, many of which involve homeomorphic isomerizations, topological processes by which certain molecules can turn themselves inside out (e. g.,in,in⇌out,out). This provides the first detailed mapping of such trends in homologous series of aliphatic bicyclic compounds XE((CH2)n)3EX with any type of bridgehead. Isomeric diborane adducts1 a,d ⋅ 2BH3are also characterized. Crystal structures ofout,out‐1 aandin,in‐1 a ⋅ 2BH3aid isomer assignments and reveal unusual cage conformations. 
    more » « less
  3. Abstract Chromia (Cr2O3) is a magnetoelectric oxide that permits voltage‐control of the antiferromagnetic (AFM) order, but it suffers technological constraints due to its low Néel Temperature (TN≈307 K) and the need of a symmetry‐breaking applied magnetic field to achieve reversal of the Néel vector. Recently, boron (B) doping of Cr2O3films led to an increaseTN>400 K and allowed the realization of voltage magnetic‐field free controlled Néel vector rotation. Here, the impact of B doping is directly imaged on the formation of AFM domains in Cr2O3thin films and elucidates the mechanism of voltage‐controlled manipulation of the spin structure using nitrogen‐vacancy (NV) scanning probe magnetometry. A stark reduction and thickness dependence of domain size in B‐doped Cr2O3(B:Cr2O3) films is found, explained by the increased germ density, likely associated with the B doping. By reconstructing the surface magnetization from the NV stray‐field maps, a qualitative distinction between the undoped and B‐doped Cr2O3films is found, manifested by the histogram distribution of the AFM ordering, that is, 180°domains for pure films, and 90°domains for B:Cr2O3films. Additionally, NV imaging of voltage‐controlled B‐doped Cr2O3devices corroborates the 90°rotation of the AFM domains observed in magnetotransport measurement. 
    more » « less
  4. Abstract We introduce the heterocumulene ligand [(Ad)NCC(tBu)](Ad=1‐adamantyl (C10H15),tBu=tert‐butyl, (C4H9)), which can adopt two forms, the azaalleneyl and ynamide. This ligand platform can undergo a reversible chelotropic shift using Brønsted acid‐base chemistry, which promotes an unprecedented spin‐state change of the [VIII] ion. These unique scaffolds are prepared via addition of 1‐adamantyl isonitrile (C≡NAd) across the alkylidyne in complexes [(BDI)V≡CtBu(OTf)] (A) (BDI=ArNC(CH3)CHC(CH3)NAr), Ar=2,6‐iPr2C6H3) and [(dBDI)V≡CtBu(OEt2)] (B) (dBDI2−=ArNC(CH3)CHC(CH2)NAr). ComplexAreacts with C≡NAd, to generate the high‐spin [VIII] complex with a κ1‐N‐ynamide ligand, [(BDI)V{κ1‐N‐(Ad)NCC(tBu)}(OTf)] (1). Conversely,Breacts with C≡NAd to generate a low‐spin [VIII] diamagnetic complex having a chelated κ2‐C,N‐azaalleneyl ligand, [(dBDI)V{κ2‐N,C‐(Ad)NCC(tBu)}] (2). Theoretical studies have been applied to better understand the mechanism of formation of2and the electronic reconfiguration upon structural rearrangement by the alteration of ligand denticity between1and2. 
    more » « less
  5. Abstract [3+n]‐Cycloaddition reactions that employ donor‐acceptor cyclopropanes using either chiral catalysts and racemic cyclopropanes or achiral catalysts and chiral, non‐racemic, cyclopropanes have become useful transformations for the construction of carbocyclic and heterocyclic compounds, with both processes offering mechanistic and structural advantages in ring formation. Although the vast majority of asymmetric cycloaddition reactions of donor‐acceptor cyclopropanes have been performed with racemic cyclopropane compounds catalyzed by Lewis acids with chiral ligands, optically active cyclopropane compounds can serve the same role using Lewis acids without chiral ligands. This review covers the use of chiral catalysts with racemic donor‐acceptor cyclopropanes and the use of chiral non‐racemic donor‐acceptor cyclopropanes with achiral Lewis acid catalysts. 
    more » « less