skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Active learning of reactive Bayesian force fields applied to heterogeneous catalysis dynamics of H/Pt
Abstract Atomistic modeling of chemically reactive systems has so far relied on either expensive ab initio methods or bond-order force fields requiring arduous parametrization. Here, we describe a Bayesian active learning framework for autonomous “on-the-fly” training of fast and accurate reactive many-body force fields during molecular dynamics simulations. At each time-step, predictive uncertainties of a sparse Gaussian process are evaluated to automatically determine whether additional ab initio training data are needed. We introduce a general method for mapping trained kernel models onto equivalent polynomial models whose prediction cost is much lower and independent of the training set size. As a demonstration, we perform direct two-phase simulations of heterogeneous H2turnover on the Pt(111) catalyst surface at chemical accuracy. The model trains itself in three days and performs at twice the speed of a ReaxFF model, while maintaining much higher fidelity to DFT and excellent agreement with experiment.  more » « less
Award ID(s):
2003725
PAR ID:
10370331
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
13
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An exploration of the “on-the-fly” nonadiabatic couplings (NACs) for nonradiative relaxation and recombination of excited states in 2D Dion–Jacobson (DJ) lead halide perovskites (LHPs) is accelerated by a machine learning approach. Specifically, ab initio molecular dynamics (AIMD) of nanostructures composed of heavy elements is performed with the use of machine-learning force-fields (MLFFs), as implemented in the Vienna Ab initio Simulation Package (VASP). The force field parametrization is established using on-the-fly learning, which continuously builds a force field using AIMD data. At each time step of the molecular dynamics (MD) simulation, the total energy and forces are predicted based on the MLFF and if the Bayesian error estimate exceeds a threshold, an ab initio calculation is performed, which is used to construct a new force field. Model training of MLFF and evaluation were performed for a range of DJ-LHP models of different thicknesses and halide compositions. The MLFF-MD trajectories were evaluated against pure AIMD trajectories to assess the level of discrepancy and error accumulation. To examine the practical effectiveness of this approach, we have used the MLFF-based MD trajectories to compute NAC and excited-state dynamics. At each stage, results based on machine learning are compared to traditional ab initio based electronic dissipative dynamics. We find that MLFF-MD provides comparable results to AIMDs when MLFF is trained in an NPT ensemble. 
    more » « less
  2. Ab initio methods offer great promise for materials design, but they come with a hefty computational cost. Recent advances with machine learning interatomic potentials (MLIPs) have revolutionized molecular dynamic simulations by providing high accuracies similar to ab initio models but at much reduced computational cost. Our study evaluates the ultra-fast force fields (UF3) potential, employing linear regression with cubic B-spline basis for assessing effective two- and three-body potentials. On benchmarking, UF3 displays comparable precision to established models like GAP, MTP, NNP (Behler Parrinello), and qSNAP MLIPs, yet is significantly faster by two to three orders of magnitude. A distinct feature of UF3 is its capability to render visual representations of learned two- and three-body potentials, shedding light on potential gaps in the learning model. In refining UF3’s performance, a comprehensive sweep of the hyperparameter space was undertaken. While our current optimizations are concentrated on energies and forces, we are primed to broaden UF3’s evaluation spectrum, focusing on its applicability in critical areas of molecular dynamics simulations. The outcome of these investigations will not only enhance the predictability and usability of UF3 but also pave the way for its broader applications in advanced materials discovery and simulations. 
    more » « less
  3. Abstract Machine learning interatomic force fields are promising for combining high computational efficiency and accuracy in modeling quantum interactions and simulating atomistic dynamics. Active learning methods have been recently developed to train force fields efficiently and automatically. Among them, Bayesian active learning utilizes principled uncertainty quantification to make data acquisition decisions. In this work, we present a general Bayesian active learning workflow, where the force field is constructed from a sparse Gaussian process regression model based on atomic cluster expansion descriptors. To circumvent the high computational cost of the sparse Gaussian process uncertainty calculation, we formulate a high-performance approximate mapping of the uncertainty and demonstrate a speedup of several orders of magnitude. We demonstrate the autonomous active learning workflow by training a Bayesian force field model for silicon carbide (SiC) polymorphs in only a few days of computer time and show that pressure-induced phase transformations are accurately captured. The resulting model exhibits close agreement with both ab initio calculations and experimental measurements, and outperforms existing empirical models on vibrational and thermal properties. The active learning workflow readily generalizes to a wide range of material systems and accelerates their computational understanding. 
    more » « less
  4. Machine learning potentials (MLPs) are poised to combine the accuracy of ab initio predictions with the computational efficiency of classical molecular dynamics (MD) simulation. While great progress has been made over the last two decades in developing MLPs, there is still much to be done to evaluate their model transferability and facilitate their development. In this work, we construct two deep potential (DP) models for liquid water near graphene surfaces, Model S and Model F, with the latter having more training data. A concurrent learning algorithm (DP-GEN) is adopted to explore the configurational space beyond the scope of conventional ab initio MD simulation. By examining the performance of Model S, we find that an accurate prediction of atomic force does not imply an accurate prediction of system energy. The deviation from the relative atomic force alone is insufficient to assess the accuracy of the DP models. Based on the performance of Model F, we propose that the relative magnitude of the model deviation and the corresponding root-mean-square error of the original test dataset, including energy and atomic force, can serve as an indicator for evaluating the accuracy of the model prediction for a given structure, which is particularly applicable for large systems where density functional theory calculations are infeasible. In addition to the prediction accuracy of the model described above, we also briefly discuss simulation stability and its relationship to the former. Both are important aspects in assessing the transferability of the MLP model. 
    more » « less
  5. Abstract The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations withab initioMD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional,ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction. 
    more » « less