Abstract Recent advances in philosophical thinking about consciousness, such as cognitive phenomenology and mereological analysis, provide a framework that facilitates using computational models to explore issues surrounding the nature of consciousness. Here we suggest that, in particular, studying the computational mechanisms of working memory and its cognitive control is highly likely to identify computational correlates of consciousness and thereby lead to a deeper understanding of the nature of consciousness. We describe our recent computational models of human working memory and propose that three computational correlates of consciousness follow from the results of this work: itinerant attractor sequences, top-down gating, and very fast weight changes. Our current investigation is focused on evaluating whether these three correlates are sufficient to create more complex working memory models that encompass compositionality and basic causal inference. We conclude that computational models of working memory are likely to be a fruitful approach to advancing our understanding of consciousness in general and in determining the long-term potential for development of an artificial consciousness specifically. 
                        more » 
                        « less   
                    
                            
                            A counting intervention promotes fair sharing in preschoolers
                        
                    
    
            Abstract Recent work has probed the developmental mechanisms that promote fair sharing. This work investigated 2.5‐ to 5.5‐year‐olds’ (N = 316; 52% female; 79% White; data collected 2016–2018) sharing behavior in relation to three cognitive correlates: number knowledge, working memory, and cognitive control. In contrast to working memory and cognitive control, number knowledge was uniquely associated with fair sharing even after controlling for the other correlates and for age. Results also showed a causal effect: After a 5‐min counting intervention (vs. a control), children improved their fair sharing behavior from pre‐test to post‐test. Findings are discussed in light of how social, cognitive, and motivational factors impact sharing behavior. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1920660
- PAR ID:
- 10370358
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Child Development
- Volume:
- 93
- Issue:
- 5
- ISSN:
- 0009-3920
- Format(s):
- Medium: X Size: p. 1365-1379
- Size(s):
- p. 1365-1379
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Retaining information in working memory is a demanding process that relies on cognitive control to protect memoranda-specific persistent activity from interference1,2. However, how cognitive control regulates working memory storage is unclear. Here we show that interactions of frontal control and hippocampal persistent activity are coordinated by theta–gamma phase–amplitude coupling (TG-PAC). We recorded single neurons in the human medial temporal and frontal lobe while patients maintained multiple items in their working memory. In the hippocampus, TG-PAC was indicative of working memory load and quality. We identified cells that selectively spiked during nonlinear interactions of theta phase and gamma amplitude. The spike timing of these PAC neurons was coordinated with frontal theta activity when cognitive control demand was high. By introducing noise correlations with persistently active neurons in the hippocampus, PAC neurons shaped the geometry of the population code. This led to higher-fidelity representations of working memory content that were associated with improved behaviour. Our results support a multicomponent architecture of working memory1,2, with frontal control managing maintenance of working memory content in storage-related areas3–5. Within this framework, hippocampal TG-PAC integrates cognitive control and working memory storage across brain areas, thereby suggesting a potential mechanism for top-down control over sensory-driven processes.more » « less
- 
            BackgroundCognitive training may partially reverse cognitive deficits in people with HIV (PWH). Previous functional MRI (fMRI) studies demonstrate that working memory training (WMT) alters brain activity during working memory tasks, but its effects on resting brain network organization remain unknown. PurposeTo test whether WMT affects PWH brain functional connectivity in resting‐state fMRI (rsfMRI). Study TypeProspective. PopulationA total of 53 PWH (ages 50.7 ± 1.5 years, two women) and 53HIV‐seronegative controls (SN, ages 49.5 ± 1.6 years, six women). Field Strength/SequenceAxial single‐shot gradient‐echo echo‐planar imaging at 3.0 T was performed at baseline (TL1), at 1‐month (TL2), and at 6‐months (TL3), after WMT. AssessmentAll participants had rsfMRI and clinical assessments (including neuropsychological tests) at TL1 before randomization to Cogmed WMT (adaptive training,n = 58: 28 PWH, 30 SN; nonadaptive training,n = 48: 25 PWH, 23 SN), 25 sessions over 5–8 weeks. All assessments were repeated at TL2 and at TL3. The functional connectivity estimated by independent component analysis (ICA) or graph theory (GT) metrics (eigenvector centrality, etc.) for different link densities (LDs) were compared between PWH and SN groups at TL1 and TL2. Statistical TestsTwo‐way analyses of variance (ANOVA) on GT metrics and two‐samplet‐tests on FC or GT metrics were performed. Cognitive (eg memory) measures were correlated with eigenvector centrality (eCent) using Pearson's correlations. The significance level was set atP < 0.05 after false discovery rate correction. ResultsThe ventral default mode network (vDMN) eCent differed between PWH and SN groups at TL1 but not at TL2 (P = 0.28). In PWH, vDMN eCent changes significantly correlated with changes in the memory ability in PWH (r = −0.62 at LD = 50%) and vDMN eCent before training significantly correlated with memory performance changes (r = 0.53 at LD = 50%). Data ConclusionICA and GT analyses showed that adaptive WMT normalized graph properties of the vDMN in PWH. Evidence Level1 Technical Efficacy1more » « less
- 
            ImportanceThe risk of mental disorders is consistently associated with variants inCACNA1C(L-type calcium channel Cav1.2) but it is not known why these channels are critical to cognition, and whether they affect the layer III pyramidal cells in the dorsolateral prefrontal cortex that are especially vulnerable in cognitive disorders. ObjectiveTo examine the molecular mechanisms expressed in layer III pyramidal cells in primate dorsolateral prefrontal cortices. Design, Setting, and ParticipantsThe design included transcriptomic analyses from human and macaque dorsolateral prefrontal cortex, and connectivity, protein expression, physiology, and cognitive behavior in macaques. The research was performed in academic laboratories at Yale, Harvard, Princeton, and the University of Pittsburgh. As dorsolateral prefrontal cortex only exists in primates, the work evaluated humans and macaques. Main Outcomes and MeasuresOutcome measures included transcriptomic signatures of human and macaque pyramidal cells, protein expression and interactions in layer III macaque pyramidal cells using light and electron microscopy, changes in neuronal firing during spatial working memory, and working memory performance following pharmacological treatments. ResultsLayer III pyramidal cells in dorsolateral prefrontal cortex coexpress a constellation of calcium-related proteins, delineated byCALB1(calbindin), and high levels ofCACNA1C(Cav1.2),GRIN2B(NMDA receptor GluN2B), andKCNN3(SK3 potassium channel), concentrated in dendritic spines near the calcium-storing smooth endoplasmic reticulum. L-type calcium channels influenced neuronal firing needed for working memory, where either blockade or increased drive by β1-adrenoceptors, reduced neuronal firing by a mean (SD) 37.3% (5.5%) or 40% (6.3%), respectively, the latter via SK potassium channel opening. An L-type calcium channel blocker or β1-adrenoceptor antagonist protected working memory from stress. Conclusions and RelevanceThe layer III pyramidal cells in the dorsolateral prefrontal cortex especially vulnerable in cognitive disorders differentially express calbindin and a constellation of calcium-related proteins including L-type calcium channels Cav1.2 (CACNA1C), GluN2B-NMDA receptors (GRIN2B), and SK3 potassium channels (KCNN3), which influence memory-related neuronal firing. The finding that either inadequate or excessive L-type calcium channel activation reduced neuronal firing explains why either loss- or gain-of-function variants inCACNA1Cwere associated with increased risk of cognitive disorders. The selective expression of calbindin in these pyramidal cells highlights the importance of regulatory mechanisms in neurons with high calcium signaling, consistent with Alzheimer tau pathology emerging when calbindin is lost with age and/or inflammation.more » « less
- 
            Cognitive processes have been found to contribute substantially to the human errors that lead to construction accidents. Working memory—a cognitive system with a limited capacity that is responsible for temporarily holding information available for processing—plays an important role in reasoning and decision-making. Since eye movements indicate where a worker directs his/her attention, tracking such movements provides a practical way to measure workers’ attention and comprehension of construction hazards. As a departure in construction industry research, this study correlates attentional allocation with working memory to assess workers’ situation awareness under different scenarios that expose workers to various hazards. To achieve this goal, this study merges research linking eye movements and workers’ attention with research focused on working-memory load and decision making and evaluates what, how, and where a worker distributes his/her attention while performing a task under different working-memory loads. Path analysis models then examined the direct and indirect effect of different working-memory loads on hazard identification performance. The independent variable (working-memory load) is linked to the dependent variable (hazard identification) through the set of mediators (attention metrics). The results showed that the high-memory load condition delayed workers’ hazard identification. The findings of this study emphasize the important role working memory plays in determining how and why workers in dynamic work environments fail to detect, comprehend, and/or respond to physical risks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
