skip to main content

Title: Decomposition of Deglacial Pacific Radiocarbon Age Controls Using an Isotope‐Enabled Ocean Model

During the last deglaciation Earth’s climate experienced strong and abrupt variations, resulting in major changes in global temperature, sea level, and ocean circulation. Although proxy records have significantly improved our understanding of climate during this period, questions remain regarding the connection between ocean circulation evolution and resulting geotracer distributions, including those of deep waters in the Pacific. Here we use the C‐iTRACE simulation, a transient ocean‐only, isotope‐enabled version of the Community Earth System Model, to better understand deglacial deep Pacific radiocarbon evolution in the context of circulation and reservoir age changes. Throughout the deglaciation, the Pacific Ocean circulation in C‐iTRACE responds strongly to glacial meltwater forcing, leading to large changes in deep Pacific Δ14C age. A multi‐millennial weakening of the overturning circulation from 20 to 15 ka BP leads to increases in deep Pacific Δ14C ages, but from 20 to 18 ka BP, nearly half (40%–60%) of this aging is controlled by changing surface reservoir age, corroborating previous studies showing that Δ14C is not solely a circulation age tracer. As the deglaciation proceeds, circulation change controls progressively more of the Δ14C age, accounting for more than 75% of it across the deep Pacific from 15 to 8 ka BP.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Identifying processes within the Earth System that have modulated atmospheric pCO2during each glacial cycle of the late Pleistocene stands as one of the grand challenges in climate science. The growing array of surface ocean pH estimates from the boron isotope proxy across the last glacial termination may reveal regions of the ocean that influenced the timing and magnitude of pCO2rise. Here we present two new boron isotope records from the subtropical‐subpolar transition zone of the Southwest Pacific that span the last 20 kyr, as well as new radiocarbon data from the same cores. The new data suggest this region was a source of carbon to the atmosphere rather than a moderate sink as it is today. Significantly higher outgassing is observed between ~16.5 and 14 kyr BP, associated with increasing δ13C and [CO3]2−at depth, suggesting loss of carbon from the intermediate ocean to the atmosphere. We use these new boron isotope records together with existing records to build a composite pH/pCO2curve for the surface oceans. The pH disequilibrium/CO2outgassing was widespread throughout the last deglaciation, likely explained by upwelling of CO2from the deep/intermediate ocean. During the Holocene, a smaller outgassing peak is observed at a time of relatively stable atmospheric CO2, which may be explained by regrowth of the terrestrial biosphere countering ocean CO2release. Our stack is likely biased toward upwelling/CO2source regions. Nevertheless, the composite pCO2curve provides robust evidence that various parts of the ocean were releasing CO2to the atmosphere over the last 25 kyr.

    more » « less
  2. Abstract

    Lower atmospheric CO2concentrations during the Last Glacial Maximum (LGM; 23.0–18.0 ka) have been attributed to the sequestration of respired carbon in the ocean interior, yet the mechanism responsible for the release of this CO2during the deglaciation remains uncertain. Here we present calculations of vertical differences in oxygen and carbon isotopes (∆δ18O and ∆δ13C, respectively) from a depth transect of southwest Pacific Ocean sediment cores to reconstruct changes in water mass structure and CO2storage. During the Last Glacial Maximum, ∆δ18O indicates a more homogenous deep Pacific below 1,100 m, whereas regional ∆δ13C elucidates greater sequestration of CO2in two distinct layers: enhanced CO2storage at intermediate depths between ~940 and 1,400 m, and significantly more CO2at 1,600 m and below. This highlights an isolated glacial intermediate water mass and places the main geochemical divide at least 500 m shallower than the Holocene. During the initial stages of the deglaciation in Heinrich Stadial 1 (17.5–14.5 ka), restructuring of the upper ~2,000 m of the southwest Pacific water column coincided with sea‐ice retreat and rapid CO2release from intermediate depths, while CO2release from the deep ocean was earlier and more gradual than waters above it. These changes suggest that sea‐ice retreat and shifts in Southern Ocean frontal locations contributed to rapid CO2ventilation from the Southern Ocean's intermediate depths and gradual ventilation from the deep ocean during the early deglaciation.

    more » « less
  3. Abstract

    The Southern Hemisphere westerly winds influence deep ocean circulation and carbon storage. While the westerlies are hypothesized to play a key role in regulating atmospheric CO2over glacial‐interglacial cycles, past changes in their position and strength remain poorly constrained. Here, we use a compilation of planktic foraminiferal δ18O from across the Southern Ocean and emergent relationships within an ensemble of climate models to reconstruct changes in the Southern Hemisphere surface westerlies over the last deglaciation. We infer a 4.8° (2.9–7.1°, 95% confidence interval) equatorward shift and about a 25% weakening of the westerlies during the Last Glacial Maximum (20 ka) relative to the mid‐Holocene (6.5 ka). Climate models from the Palaeoclimate Modeling Intercomparison Project substantially underestimate this inferred equatorward wind shift. According to our reconstruction, the poleward shift in the westerlies over deglaciation closely mirrors the rise in atmospheric CO2(R2 = 0.98). Experiments with a 0.25° resolution ocean‐sea‐ice‐carbon model suggest that shifting the westerlies equatorward reduces the overturning rate of the ocean below 2 km depth, leading to a suppression of CO2outgassing from the polar Southern Ocean. Our results support a role for the westerly winds in driving the deglacial CO2rise, and suggest outgassing of natural CO2from the Southern Ocean is likely to increase as the westerlies shift poleward due to anthropogenic warming.

    more » « less
  4. Beaufort, Luc (Ed.)
    Abstract. The evolution of the Cenozoic cryosphere from unipolar to bipolar over the past 30 million years (Myr) is broadly known. Highly resolved records of carbonate (CaCO3) content provide insight into the evolution of regional and global climate, cryosphere, and carbon cycle dynamics. Here, we generate the first Southeast Atlantic CaCO3 content record spanning the last 30 Myr, derived from X-ray fluorescence (XRF) ln(Ca/Fe) data collected at Ocean Drilling Program Site 1264 (Walvis Ridge, SE Atlantic Ocean). We present a comprehensive and continuous depth and age model for the entirety of Site 1264 (~316 m; 30 Myr). This constitutes a key reference framework for future palaeoclimatic and palaeoceanographic studies at this location. We identify three phases with distinctly different orbital controls on Southeast Atlantic CaCO3 deposition, corresponding to major developments in climate, the cryosphere and the carbon cycle: (1) strong ~110 kyr eccentricity pacing prevails during Oligocene–Miocene global warmth (~30–13 Ma), (2) increased eccentricity-modulated precession pacing appears after the middle Miocene ClimateTransition (mMCT) (~14–8 Ma), and (3) pervasive obliquity pacing appears in the late Miocene (~7.7–3.3 Ma) following greater importance of high-latitude processes, such as increased glacial activity and high-latitude cooling. The lowest CaCO3 content (92 %–94 %) occurs between 18.5 and 14.5 Ma, potentially reflecting dissolution caused by widespread early Miocene warmth and preceding Antarctic deglaciation across the Miocene Climatic Optimum (~17–14.5 Ma) by 1.5 Myr. The emergence of precession pacing of CaCO3 deposition at Site 1264 after ~14 Ma could signal a reorganisation of surface and/or deep-water circulation in this region following Antarctic reglaciation at the mMCT. The increased sensitivity to precession at Site 1264 between 14 and 13 Ma is associated with an increase in mass accumulation rates (MARs) and reflects increased regional CaCO3 productivity and/or recurrent influxes of cooler, less corrosive deep waters. The highest carbonate content (%CaCO3) and MARs indicate that the late Miocene–early PlioceneBiogenic Bloom (LMBB) occurs between ~7.8 and 3.3Ma at Site 1264; broadly contemporaneous with the LMBB in the equatorial Pacific Ocean. At Site 1264, the onset of the LMBB roughly coincides with appearance of strong obliquity pacing of %CaCO3, reflecting increased high-latitude forcing. The global expression of the LMBB may reflect increased nutrient input into the global ocean resulting from enhanced aeolian dust and/or glacial/chemical weathering fluxes, due to enhanced glacial activity and increased meridional temperature gradients. Regional variability in the timing and amplitude of the LMBB may be driven by regional differences in cooling, continental aridification and/or changes in ocean circulation in the late Miocene. 
    more » « less
  5. Abstract

    During the last ice age, the western United States was covered by large lakes, sustained partly by higher levels of precipitation. Increased rainfall was driven by the atmospheric circulation associated with the presence of large North American ice sheets, yet Pleistocene lakes generally reached their highstands not at glacial maximum but during deglaciation. Prior modeling studies, however, showed nearly monotonic drying since the last glacial maximum. Here I show that iTraCE, a new transient climate simulation of the last deglaciation, reproduces a robust peak in winter rainfall over the Great Basin near 16 ka. The simulated peak is driven by a transient strengthening and southward shift of the midlatitude jet. While meltwater forcing is an important driver of changes to the North Pacific Jet, changing orbital conditions and rising atmospheric CO2also shift the jet south and contribute to wetter conditions over the western US during deglaciation.

    more » « less