skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Submarine Canyon Oxygen Anomaly Caused by Mixing and Boundary‐Interior Exchange
Abstract

Closely spaced CTD stations showed elevated oxygen within Monterey Submarine Canyon. Anomalously high (2–5 μmol kg−1) dissolved oxygen was found between 600–1,100 m in the O2minimum, co‐located with a turbulence hotspot caused by convergence of upcanyon, semidiurnal internal tidal energy flux. Furthermore, the oxygen anomaly extended >10 km downcanyon at the same depth and isopycnals of a previously identified intrusion predicted from buoyancy conservation. We show that dissolved oxygen and fine suspended particles act as independent tracers to (a) validate previous microstructure observations of intense turbulence extending >400 m above the bed (mab) at the canyon hotspot, and (b) track boundary‐interior exchange driven by mixing in the form of isopyncal‐spreading of anomalies away from a near‐boundary source. This study demonstrates the use of oxygen, commonly measured with shipboard profiling, as a tool for tracking mixing and lateral dispersal.

 
more » « less
NSF-PAR ID:
10370461
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
10
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Eastern Tropical North Atlantic Oxygen Minimum Zone (OMZ) is a biogeochemically important area. The low oxygen in this region is thought to be maintained by a balance between the slow mixing supply of O2and its removal by respiration. We use data from 90 isopycnal RAFOS floats to characterize the mixing coefficients responsible for the supply of oxygen to the region. One group was ballasted to drift on the isopycnal where oxygen is at its minimum and the other about 300 m deeper. Using the record of the float positions at each 6‐hr interval, we calculate the relative dispersion of pairs of floats. The time derivative of this dispersion provides a diffusivity coefficient that captures the net effect of eddy‐driven mixing along each isopycnal. Float pairs deployed at shared locations but across the two target densities reveal that the influence of vertically sheared currents is to accelerate the dispersion by 10–15% relative to true isopycnal dispersion. Relative dispersion of the floats in the OMZ area obeyed the canonical four‐thirds power scaling, representative of two‐dimensional turbulence. At the length scale of the maximum energy‐containing eddy (approximately 100 km), the effective diffusivity is 1,400±500 m2/s in the zonal direction and 800±300 m2/s in the meridional. Within the uncertainty, the diffusivities on the two isopycnals are indistinguishable from one another. An idealized model suggests that meridional mixing across the large‐scale O2gradient is the leading supply term of oxygen to the OMZ.

     
    more » « less
  2. Abstract

    Processes controlling dissolved barium (dBa) were investigated along the GEOTRACES GA03 North Atlantic and GP16 Eastern Tropical Pacific transects, which traversed similar physical and biogeochemical provinces. Dissolved Ba concentrations are lowest in surface waters (∼35–50 nmol kg−1) and increase to 70–80 and 140–150 nmol kg−1in deep waters of the Atlantic and Pacific transects, respectively. Using water mass mixing models, we estimate conservative mixing that accounts for most of dBa variability in both transects. To examine nonconservative processes, particulate excess Ba (pBaxs) formation and dissolution rates were tracked by normalizing particulate excess230Th activities. Th‐normalized pBaxsfluxes, with barite as the likely phase, have subsurface maxima in the top 1,000 m (∼100–200 μmol m−2 year−1average) in both basins. Barite precipitation depletes dBa within oxygen minimum zones from concentrations predicted by water mass mixing, whereas inputs from continental margins, particle dissolution in the water column, and benthic diffusive flux raise dBa above predications. Average pBaxsburial efficiencies along GA03 and GP16 are ∼37% and 17%–100%, respectively, and do not seem to be predicated on barite saturation indices in the overlying water column. Using published values, we reevaluate the global freshwater dBa river input as 6.6 ± 3.9 Gmol year−1. Estuarine mixing processes may add another 3–13 Gmol year−1. Dissolved Ba inputs from broad shallow continental margins, previously unaccounted for in global marine summaries, are substantial (∼17 Gmol year−1), exceeding terrestrial freshwater inputs. Revising river and shelf dBa inputs may help bring the marine Ba isotope budget more into balance.

     
    more » « less
  3. Abstract

    The Southern Ocean (SO) connects major ocean basins and hosts large air‐sea carbon fluxes due to the resurfacing of deep nutrient and carbon‐rich waters. While wind‐induced turbulent mixing in the SO mixed layer is significant for air‐sea fluxes, the importance of the orders‐of‐magnitude weaker background mixing below is less well understood. The direct impact of altering background mixing on tracers, as opposed to the response due to a longer‐term change in large‐scale ocean circulation, is also poorly studied. Topographically induced upward propagating lee waves, wind‐induced downward propagating waves generated at the base of the mixed layer, shoaling of southward propagating internal tides, and turbulence under sea ice are among the processes known to induce upper ocean background turbulence but typically are not represented in models. Here, we show that abruptly altering the background mixing in the SO over a range of values typically used in climate models (m2 s−1m2 s−1) can lead to a ∼70% change in annual SO air‐sea CO2fluxes in the first year of perturbations, and around a ∼40% change in annual SO air‐sea CO2fluxes over the 6‐year duration of the experiment, with even greater changes on a seasonal timescale. This is primarily through altering the temperature and the dissolved inorganic carbon and alkalinity distribution in the surface water. Given the high spatiotemporal variability of processes that induce small‐scale background mixing, this work demonstrates the importance of their representation in climate models for accurate simulation of global biogeochemical cycles.

     
    more » « less
  4. Abstract

    Seasonally ice‐covered permafrost lakes in the Arctic emit methane to the atmosphere during periods of open‐water. However, processes contributing to methane cycling under‐ice have not been thoroughly addressed despite the potential for significant methane emission to the atmosphere at ice‐out. We studied annual dissolved methane dynamics within a small (0.2 ha) Mackenzie River Delta lake using sensor and water sampling packages that autonomously and continuously collected lake water samples, respectively, for two years at multiple water column depths. Lake physical and biogeochemical properties (temperature; light; concentrations of dissolved oxygen, manganese, iron, and dissolved methane, including stable carbon, and radiocarbon isotopes) revealed annual patterns. Dissolved methane concentrations increase under‐ice after electron acceptors (oxygen, manganese, and iron oxides) are depleted or inaccessible from the water column. The radiocarbon age of dissolved methane suggests a source from recently decomposed carbon as opposed to thawed ancient permafrost. Sources of dissolved methane under‐ice include a diffusive flux from the sediments and may include water column methanogenesis and/or under‐ice hydrodynamic controls. Following ice‐out, the water column only partially mixes allowing half of the winter‐derived dissolved methane to be microbially oxidized. Despite oxidation at depth, surface water was a source of methane to the atmosphere. The greatest diffusive fluxes to the atmosphere occurred following ice‐out (75 mmol CH4m−2 d−1) and during a mixing episode in mid‐July, likely driven by a storm event. This study demonstrates the importance of fine‐scale temporal sampling to understand dissolved methane processes in seasonally ice‐covered lakes.

     
    more » « less
  5. Abstract

    River metabolism and, thus, carbon cycling are governed by gross primary production and ecosystem respiration. Traditionally river metabolism is derived from diel dissolved oxygen concentrations, which cannot resolve diel changes in ecosystem respiration. Here, we compare river metabolism derived from oxygen concentrations with estimates from stable oxygen isotope signatures (δ18O2) from 14 sites in rivers across three biomes using Bayesian inverse modeling. We find isotopically derived ecosystem respiration was greater in the day than night for all rivers (maximum change of 113 g O2 m−2 d−1, minimum of 1 g O2 m−2 d−1). Temperature (20 °C) normalized rates of ecosystem respiration and gross primary production were 1.1 to 87 and 1.5 to 22-fold higher when derived from oxygen isotope data compared to concentration data. Through accounting for diel variation in ecosystem respiration, our isotopically-derived rates suggest that ecosystem respiration and microbial carbon cycling in rivers is more rapid than predicted by traditional methods.

     
    more » « less