skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Mesoscale Spatial Variability of Lower Thermospheric Winds During the Anomalous Transport Rocket Experiment
Abstract

We present observations and analysis of seven horizontal wind profiles obtained by the trimethyl aluminum (TMA) tracer method on 27 March 2012 over the Atlantic ocean near Wallops Island, Virginia (37.9°N, 75.4°W). Payloads were launched in order to produce quasi‐simultaneous trails separated by tens to hundreds of kilometers. Tracer positions evolving in time and space were triangulated from three locations along the Atlantic seaboard and wind profiles between 90 and 140 km calculated. The wind profiles present a coherent wind structure dominated by very strong diurnal and semidiurnal tides up to 110 km and an upward propagating inertia‐gravity wave between 110 and 140 km. Properties such as horizontal and vertical wavelength could be extracted from the simultaneous observations at separate locations. A statistical analysis of the wind differences was performed to estimate power‐law coefficients of the second structure function at mesoscales. They show scale‐independence in the region of the largest wind shears, 100–110 km, and a scaling coefficient characteristic for isotropic wind fluctuations above and below this region.

 
more » « less
NSF-PAR ID:
10370469
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Volume:
127
Issue:
5
ISSN:
2169-9380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A new Cloud Imaging and Particle Size (CIPS) gravity wave (GW) variance data set is available that facilitates automated analysis of GWs entering the mesosphere. This work examines several years of CIPS GW variances from 50 to 55 km in the context of the Arctic and Antarctic polar vortices. CIPS observes highest GW activity in the vortex edge region where horizontal wind speeds are largest, consistent with previously published GW climatologies in the stratosphere and mesosphere. CIPS observes the well‐documented planetary wave (PW)‐1 patterns in GW activity in both hemispheres. In the Northern Hemisphere, maximum GW activity occurs over the North Atlantic and western Europe. In the Southern Hemisphere, maximum GW activity stretches from the Andes over the South Atlantic and Indian Oceans, as expected. In the NH, CIPS GW spatial patterns are highly correlated with horizontal wind speed. In the SH, CIPS GW patterns are less positively correlated with the winds due to increased zonal symmetry and orographic forcing. The Andes Mountains and Antarctic Peninsula, South Georgia Island, Kerguelen/Heard Islands, New Zealand, and Tasmania are persistent sources of orographic GWs. Atmospheric Infrared sounder observations of stratospheric GWs are analyzed alongside CIPS to explore vertical GW coherence and to infer GW propagation and sources. NH midlatitude GW activity is reduced during the January 2021 SSW, as expected. This reduction in GWs leads to a simultaneous reduction in traveling ionospheric disturbances (TIDs), providing more evidence that weak polar vortex events with weak GW activity leads to reduced daytime TID activity.

     
    more » « less
  2. Abstract

    Thermal equilibrium in planetary atmospheres occurs at altitudes where the ion, electron, and neutral temperatures are equal. Thermal equilibrium is postulated to occur in the collision‐dominated ionosphere. This postulated altitude is above the lower boundary of all empirical models of planetary ionospheres. Physics‐based model predictions of the altitude cannot be validated due to a lack of adequate simultaneous observations of temperature profiles. This study presents temperature profiles from simultaneous observations on Atmosphere Explorer–C below 140 km and quiet‐time neutral observations from Thermosphere Ionosphere Mesosphere Energy and Dynamics/Global UltraViolet Imager over Millstone Hill. These are compared with profiles from physics‐based models with a discussion of their respective limitations. We conclude that there does not yet exist a quantitative understanding of the ion, electron, and neutral thermalization processes in low‐altitude planetary ionospheres. Progress on this topic requires an adequate database of simultaneous ion, electron, and neutral temperature profiles in the 110–140 km altitude range.

     
    more » « less
  3. Abstract

    Few remote sensing or in‐situ techniques can measure winds in Earth's thermosphere between altitudes of 120 and 200 km. One possible approach within this region uses Doppler spectroscopy of the optical emission from atomic oxygen at 558 nm, although historical approaches have been hindered in the auroral zone because the emission altitude varies dramatically, both across the sky and over time, as a result of changing characteristic energy of auroral precipitation. Thus, a new approach is presented that instead uses this variation as an advantage, to resolve height profiles of the horizontal wind. Emission heights are estimated using the Doppler temperature derived from the 558 nm emission. During periods when the resulting estimates span a wide enough height interval, it is possible to use low order polynomial functions of altitude to model the Doppler shifts observed across the sky and over time, and thus reconstruct height profiles of the horizontal wind components. The technique introduced here is shown to work well provided there are no strong horizontal gradients in the wind field. Conditions satisfying these caveats do occur frequently and the resulting wind profiles validate well when compared to absolute in‐situ wind measurements from a rocket‐borne chemical release. While both the optical and chemical tracer techniques agreed with each other, they did not agree with the HWM‐14 horizontal wind model. Applying this technique to wind measurements near the geomagnetic cusp footprint indicated that cusp‐region forcing did not penetrate to atmospheric heights of 240 km or lower.

     
    more » « less
  4. Abstract

    The Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) field campaign provides accurate data for aerosol characterization and trace gas profiles, and establishes knowledge of the relationships between aerosols and water. The dropsonde dataset provides anin situcharacterization of the vertical thermodynamic structure of the atmosphere during 165 research flights by NASA Langley’s King Air research aircraft between February 2020 and June 2022 and four test flights between December 2019 and November 2021. The research flights covered the western North Atlantic region, off the coast of the Eastern United States and around Bermuda and covered all seasons. The dropsonde profiles provide observations of temperature, pressure, relative humidity, and horizontal and vertical winds between the surface and about 9 km. 801 dropsondes were released, of which 796 were processed and 788 provide complete profiles of all parameters between the flight level and the surface with normal parachute performance. Here, we describe the dataset, the processing of the measurements, general statistics, and applications of this rich dataset.

     
    more » « less
  5. In this paper, for the first time, simultaneous atmospheric temperature perturbation profiles obtained from the TIMED/SABER satellite and equatorial ion density and vertical plasma drift velocity observations with and without ESF activity obtained from the C/NOFS satellite are used to investigate the effect of gravity waves (GW) on ESF. The horizontal and vertical wavelengths of ionospheric oscillations and GWs are estimated by applying wavelet analysis techniques. In addition, vertically propagating GWs that dissipate energy in the ionosphere-thermosphere system are investigated using the spectral analysis technique. We find that the vertical wavelength of GW, corresponding to dominant wavelet power, ranges from 12 to 31 km regardless of the conditions of the ionosphere; however, GWs with vertical wavelengths between about 1 to 13 km are found every day, saturated between 90 and 110 km at different longitudinal sectors. Filtering out vertical wavelengths above 13 km from temperature perturbations, ranges of zonal wavelengths of GW (i.e., from about 290 to 950 km) are found corresponding to irregular and non-irregular ionosphere. Similarly, corresponding to dominant oscillations, the zonal wavelength of ion density perturbations is found within 16 to 1520 km. Moreover, we find an excellent agreement among the median zonal wavelengths of GW for the cases of irregular and non-irregular ionosphere and ion density perturbations that are 518, 495, and 491 km, respectively. The results imply that seed perturbations due to GW with a vertical wavelength from about 1 to 13 km evolve to ion density irregularity and may be amplified due to post-sunset vertical upward drift velocity. 
    more » « less