Abstract How the noncoding genome affects cellular functions is a key biological question. A particular challenge is to distinguish the effects of noncoding DNA elements from long noncoding RNAs (lncRNAs) that coincide at the same loci. Here, we identified the flowering‐associated intergenic lncRNA (FLAIL) inArabidopsisthrough early floweringflailmutants. Expression ofFLAILRNA from a different chromosomal location in combination with strand‐specific RNA knockdown characterizedFLAILas a trans‐acting RNA molecule.FLAILdirectly binds to differentially expressed target genes that control flowering via RNA–DNA interactions through conserved sequence motifs.FLAILinteracts with protein and RNA components of the spliceosome to affect target mRNA expression through co‐transcriptional alternative splicing (AS) and linked chromatin regulation. In the absence ofFLAIL, splicing defects at the direct FLAIL target flowering gene LACCASE 8 (LAC8) correlated with reduced mRNA expression. Double mutant analyses support a model whereFLAIL‐mediated splicing of LAC8 promotes its mRNA expression and represses flowering. Our study suggests lncRNAs as accessory components of the spliceosome that regulate AS and gene expression to impact organismal development.
more »
« less
High-dimension to high-dimension screening for detecting genome-wide epigenetic and noncoding RNA regulators of gene expression
Abstract MotivationThe advancement of high-throughput technology characterizes a wide variety of epigenetic modifications and noncoding RNAs across the genome involved in disease pathogenesis via regulating gene expression. The high dimensionality of both epigenetic/noncoding RNA and gene expression data make it challenging to identify the important regulators of genes. Conducting univariate test for each possible regulator–gene pair is subject to serious multiple comparison burden, and direct application of regularization methods to select regulator–gene pairs is computationally infeasible. Applying fast screening to reduce dimension first before regularization is more efficient and stable than applying regularization methods alone. ResultsWe propose a novel screening method based on robust partial correlation to detect epigenetic and noncoding RNA regulators of gene expression over the whole genome, a problem that includes both high-dimensional predictors and high-dimensional responses. Compared to existing screening methods, our method is conceptually innovative that it reduces the dimension of both predictor and response, and screens at both node (regulators or genes) and edge (regulator–gene pairs) levels. We develop data-driven procedures to determine the conditional sets and the optimal screening threshold, and implement a fast iterative algorithm. Simulations and applications to long noncoding RNA and microRNA regulation in Kidney cancer and DNA methylation regulation in Glioblastoma Multiforme illustrate the validity and advantage of our method. Availability and implementationThe R package, related source codes and real datasets used in this article are provided at https://github.com/kehongjie/rPCor. Supplementary informationSupplementary data are available at Bioinformatics online.
more »
« less
- Award ID(s):
- 2113568
- PAR ID:
- 10370494
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 38
- Issue:
- 17
- ISSN:
- 1367-4803
- Format(s):
- Medium: X Size: p. 4078-4087
- Size(s):
- p. 4078-4087
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.more » « less
-
The emergence of and transitions between distinct phenotypes in isogenic cells can be attributed to the intricate interplay of epigenetic marks, external signals, and gene-regulatory elements. These elements include chromatin remodelers, histone modifiers, transcription factors, and regulatory RNAs. Mathematical models known as gene-regulatory networks (GRNs) are an increasingly important tool to unravel the workings of such complex networks. In such models, epigenetic factors are usually proposed to act on the chromatin regions directly involved in the expression of relevant genes. However, it has been well-established that these factors operate globally and compete with each other for targets genome-wide. Therefore, a perturbation of the activity of a regulator can redistribute epigenetic marks across the genome and modulate the levels of competing regulators. In this paper, we propose a conceptual and mathematical modeling framework that incorporates both local and global competition effects between antagonistic epigenetic regulators, in addition to local transcription factors, and show the counterintuitive consequences of such interactions. We apply our approach to recent experimental findings on the epithelial–mesenchymal transition (EMT). We show that it can explain the puzzling experimental data, as well as provide verifiable predictions.more » « less
-
Abstract MotivationSingle-cell RNA sequencing (scRNA-seq) has revolutionized biological sciences by revealing genome-wide gene expression levels within individual cells. However, a critical challenge faced by researchers is how to optimize the choices of sequencing platforms, sequencing depths and cell numbers in designing scRNA-seq experiments, so as to balance the exploration of the depth and breadth of transcriptome information. ResultsHere we present a flexible and robust simulator, scDesign, the first statistical framework for researchers to quantitatively assess practical scRNA-seq experimental design in the context of differential gene expression analysis. In addition to experimental design, scDesign also assists computational method development by generating high-quality synthetic scRNA-seq datasets under customized experimental settings. In an evaluation based on 17 cell types and 6 different protocols, scDesign outperformed four state-of-the-art scRNA-seq simulation methods and led to rational experimental design. In addition, scDesign demonstrates reproducibility across biological replicates and independent studies. We also discuss the performance of multiple differential expression and dimension reduction methods based on the protocol-dependent scRNA-seq data generated by scDesign. scDesign is expected to be an effective bioinformatic tool that assists rational scRNA-seq experimental design and comparison of scRNA–seq computational methods based on specific research goals. Availability and implementationWe have implemented our method in the R package scDesign, which is freely available at https://github.com/Vivianstats/scDesign. Supplementary informationSupplementary data are available at Bioinformatics online.more » « less
-
Abstract BackgroundV0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. MethodsTo identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type andevx1;evx2double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes inevx1;evx2double mutants and wild-type siblings. ResultsOur data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development,evx1;evx2double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes arehmx2andhmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression ofskor1aandnefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulateskor1aandnefmaexpression in V0v interneurons by repressing Hmx2/3a expression. ConclusionsThis study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.more » « less