Silicon (Si) anodes are promising candidates for Li-ion batteries due to their high specific capacity and low operating potential. Implementation has been challenged by the significant Si volume changes during (de)lithiation and associated growth/regrowth of the solid electrolyte interphase (SEI). In this report, fluorinated local high concentration electrolytes (FLHCEs) were designed such that each component of the electrolyte (solvent, salt, diluent) is fluorinated to modify the chemistry and stabilize the SEI of high (30%) silicon content anodes. FLHCEs were formulated to probe the electrolyte salt concentration and ratio of the fluorinated carbonate solvents to a hydrofluoroether diluent. Higher salt concentrations led to higher viscosities, conductivities, and contact angles on polyethylene separators. Electrochemical cycling of Si-graphite/NMC622 pouch cells using the FLHCEs delivered up to 67% capacity retention after 100 cycles at a C/3 rate. Post-cycling X-ray photoelectron spectroscopy (XPS) analyses of the Si-graphite anodes indicated the FLHCEs formed a LiF rich solid electrolyte interphase (SEI). The findings show that the fluorinated local high concentration electrolytes contribute to stabilizing the Si-graphite electrode over extended cycling.
- Publication Date:
- NSF-PAR ID:
- 10370567
- Journal Name:
- Journal of The Electrochemical Society
- Volume:
- 169
- Issue:
- 9
- Page Range or eLocation-ID:
- Article No. 090501
- ISSN:
- 0013-4651
- Publisher:
- The Electrochemical Society
- Sponsoring Org:
- National Science Foundation
More Like this
-
Carbonate-based electrolytes are widely used in Li-ion batteries but are limited by a small operating temperature window and poor cycling with silicon-containing graphitic anodes. The lack of non-carbonate electrolyte alternatives such as ether-based electrolytes is due to undesired solvent co-intercalation that occurs with graphitic anodes. Here, we show that fluoroethers are the first class of ether solvents to intrinsically support reversible lithium-ion intercalation into graphite without solvent co-intercalation at conventional salt concentrations. In full cells using a graphite anode, they enable 10-fold higher energy densities compared to conventional ethers, and better thermal stability over carbonate electrolytes (operation up to 60 °C) by producing a robust solvent-derived solid electrolyte interphase (SEI). As single-solvent–single-salt electrolytes, they remarkably outperform carbonate electrolytes with fluoroethylene carbonate (FEC) and vinylene carbonate (VC) additives when cycled with graphite–silicon composite anodes. Our molecular design strategy opens a new class of electrolytes that can enable next generation Li-ion batteries with higher energy density and a wider working temperature window.
-
Suffering from critical instability of lithium (Li) anode, the most commercial electrolytes, carbonate-ester electrolytes, have been restrictedly used in high-energy Li metal batteries (LMBs) despite of their broad implementation in lithium-ion batteries. Here, abundant, natural corn protein, zein, is exploited as a novel additive to stabilize Li anode and effectively prolong the cycling life of LMBs based on carbonate-ester electrolyte. It is discovered that the denatured zein is involved in the formation of solid electrolyte interphase (SEI), guides Li+ deposition and repairs the cracked SEI. In specific, the zein-rich SEI benefits the anion immobilization, enabling uniform Li+ deposition to diminish dendrite growth; the preferential zein-Li reaction effectively repairs the cracked SEI, protecting Li from parasite reactions. The resulting symmetrical Li cell exhibits a prolonged cycling life to over 350 h from <200 h for pristine cell at 1 mA cm 2 with a capacity of 1 mAh cm^ 2. Paired with LiFePO4 cathode, zein additive markedly improves the electrochemical performance including a higher capacity of 130.1 mAh g^ 1 and a higher capacity retention of ~ 80 % after 200 cycles at 1 C. This study demonstrates a natural protein to be an effective additive for the most commercial electrolytesmore »
-
It has been widely suggested in literature that a lithium fluoride (LiF)-rich solid electrolyte interphase (SEI) affects Coulombic efficiency (CE) of the Li metal anode used with liquid electrolytes. Yet, the influence of LiF on Li metal deposition has been challenging to examine. Herein, we developed a method to synthesize LiF nanoscale particles with tunable sizes (30–300 nm) on Cu electrodes by electrochemical reduction of fluorinated gases under controlled discharge rates and capacities. The impact of LiF nanoparticles on overpotential and morphology of Li deposition was further studied in a conventional carbonate electrolyte. By cyclic voltammetry, Li plating overpotentials exhibit a clear correlation with the total surface area of LiF particles. Additionally, Li metal deposits (10
μ Ah cm−2) nucleated under galvanostatic conditions (0.5 mA cm−2) on Cu/LiF showed increasing feature sizes with a lower average LiF particle size and higher coverage of LiF. However, no significant improvement in CE was observed for LiF-coated Cu. Our findings provide evidence that a particle-based mode of SEI fluorination can influence early-stage Li nucleation to a modest degree, and this effect is maximized when LiF is uniformly and densely distributed. However, sparser and larger LiF have vanishing or even detrimental effect on cycling performance. -
Lithium is the most attractive anode material for high-energy density rechargeable batteries, but its cycling is plagued by morphological irreversibility and dendrite growth that arise in part from its heterogeneous “native” solid electrolyte interphase (SEI). Enriching the SEI with lithium fluoride (LiF) has recently gained popularity to improve Li cyclability. However, the intrinsic function of LiF—whether chemical, mechanical, or kinetic in nature—remains unknown. Herein, we investigated the stability of LiF in model LiF-enriched SEIs that are either artificially preformed or derived from fluorinated electrolytes, and thus, the effect of the LiF source on Li electrode behavior. We discovered that the mechanical integrity of LiF is easily compromised during plating, making it intrinsically unable to protect Li. The ensuing in situ repair of the interface by electrolyte, either regenerating LiF or forming an extra elastomeric “outer layer,” is identified as the more critical determinant of Li electrode performance. Our findings present an updated and dynamic picture of the LiF-enriched SEI and demonstrate the need to carefully consider the combined role of ionic and electrolyte-derived layers in future design strategies.
-
The physiochemical nature of reactive metal electrodeposits during the early stages of electrodeposition is rarely studied but known to play an important role in determining the electrochemical stability and reversibility of electrochemical cells that utilize reactive metals as anodes. We investigated the early-stage growth dynamics and reversibility of electrodeposited lithium in liquid electrolytes infused with brominated additives. On the basis of equilibrium theories, we hypothesize that by regulating the surface energetics and surface ion/adatom transport characteristics of the interphases formed on Li, Br-rich electrolytes alter the morphology of early-stage Li electrodeposits; enabling late-stage control of growth and high electrode reversibility. A combination of scanning electron microscopy (SEM), image analysis, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), and contact angle goniometry are employed to evaluate this hypothesis by examining the physical–chemical features of the material phases formed on Li. We report that it is possible to achieve fine control of the early-stage Li electrodeposit morphology through tuning of surface energetic and ion diffusion properties of interphases formed on Li. This control is shown further to translate to better control of Li electrodeposit morphology and high electrochemical reversibility during deep cycling of the Li metal anode. Our results show that understandingmore »