skip to main content


Title: Laser‐quality Tm:(Lu 0.8 Sc 0.2 ) 2 O 3 mixed sesquioxide ceramics shaped by gelcasting of well‐dispersed nanopowders
Abstract

Tm3+‐doped mixed sesquioxide transparent ceramics are attractive candidates for the generation of robust ~2.1 μm lasers. In this paper, laser‐quality Tm:(Lu0.8Sc0.2)2O3mixed sesquioxide ceramics were shaped for the first time by gelcasting of well‐dispersed nanopowders, which were obtained using a modified coprecipitation method. The dispersibility of starting nanopowders was largely improved using alcohol‐water solvent. The rheological properties of slurries were optimized for gelcasting. We also investigated the densification behavior of the gel‐casted green compacts. In contrast to the dry‐pressing route, it was found that gelcasting could yield more homogeneous and transparent ceramics. The optical in‐line transmittance of the ceramic rod 12 mm in length was as high as 80.3% at 2090 nm. Upon pumping the ceramic rod by 796 nm diode laser, a 1.88 WCWlaser at 2090 nm was acquired with a slope efficiency of 24.6% (with respect to the input pump power).

 
more » « less
NSF-PAR ID:
10370630
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
102
Issue:
8
ISSN:
0002-7820
Page Range / eLocation ID:
p. 4919-4928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Sintering additives are generally considered to be important for improving densification in fabrication of transparent ceramics. However, the sintering aids as impurities doped in the laser materials would decrease the laser output power and produce additional heat during laser operation. In this work, Yb:YAG ceramics were vacuum‐sintered without additives at different temperatures for various soaking time through using ball‐milled powders synthesized by co‐precipitation route. The densification behavior and grain growth kinetics of Yb:YAG ceramics were systematically investigated through densification curves and microstructural characterizations. It was determined that the densification in the 1500°C‐1600°C temperature range was controlled by a grain‐boundary diffusion. It is revealed that the volume diffusion is the main mechanism controlling the grain growth between 1600°C and 1750°C. Although SiO2additives can promote densification during low‐temperature sintering, the optical transmittance of Yb:YAG ceramic with no additives, sintered at 1800°C for 15 hours, reaches a maximum of 83.4% at 1064 nm, very close to the measured transmittance value of Yb:YAG single crystal. The optical attenuation loss was measured at 1064 nm in Yb:YAG transparent ceramic, to be 0.0035 cm−1, a value close to that observed for single crystals.

     
    more » « less
  2. Abstract

    A simple and facile method was developed to fabricate functional bulk barium titanate (BaTiO3,BT) ceramics using the paste extrusion 3D printing technique. TheBTceramic is a lead‐free ferroelectric material widely used for various applications in sensors, energy storage, and harvesting. There are several traditional methods (eg, tape casting) to process bulkBTceramics but they have disadvantages such as difficult handing without shape deformation, demolding, complex geometric shapes, expansive molds, etc. In this research, we utilized the paste extrusion 3D printing technique to overcome the traditional issues and developed printable ceramic suspensions containingBTceramic powder, polyvinylidene fluoride (PVDF), N,N‐dimethylformamide (DMF) through simple mixing method and chemical formulation. ThisPVDFsolution erformed multiple roles of binder, plasticizer, and dispersant for excellent manufacturability while providing high volume percent and density of the final bulk ceramic. Based on empirical data, it was found that the maximum binder ratio with good viscosity and retention for desired geometry is 1:8.8, while the maximumBTcontent is 35.45 vol% (77.01 wt%) in order to achieve maximum density of 3.93 g/cm3(65.3%) for 3D printedBTceramic. Among different sintering temperatures, it was observed that the sinteredBTceramic at 1400°C had highest grain growth and tetragonality which affected high performing piezoelectric and dielectric properties, 200 pC/N and 4730 at 103 Hz respectively. This paste extrusion 3D printing technique and simple synthesis method for ceramic suspensions are expected to enable rapid massive production, customization, design flexibility of the bulk piezoelectric and dielectric devices for next generation technology.

     
    more » « less
  3. Abstract

    The quantum of research in the area of supercapacitors is typically focused on the electrode materials. As such, there are many opportunities for the optimization of the other components, such as the separators, to further increase the power, efficiency, and longevity of supercapacitors. To contribute to this field of research, we present an innovative alternative for the fabrication of separators; using polymer/ceramic composites (PCC) based on polyvinylidene fluoride (PVDF) and polypropylene (PPG) mixed with different alkaline earth metal‐based titanates (eg barium, calcium, and strontium). ThePCCseparators were prepared via phase inversion precipitation technique, a feasible and scalable method for the fabrication of these composites. Different additives were used to modulate the porosity and thus, improve the charge transfer rates. Then, a heating process ensured a uniform organization of the composites. Furthermore, we tested the effect of thermally annealing the ceramics on the separators’ performance. The precursor materials and thePCC's were extensively characterized by means of X‐ray diffraction (XRD) and scanning electron microscopy (SEM). The electrochemical, mechanical, and dielectric properties of thePCC's were measured and compared to common commercial separators used today. Results suggest that thermal treatment improves tensile strength of the separators by at least ca. 60% without compromising the similar electrochemical profile to the commercial separators (44.52 ± 2.82 Ω vs 67.65 ± 29.01 Ω). Lastly, all of the fabricatedPCC's showed higher dielectric constants (4.52 in average for the as prepared separators and 2.99 for the heatedPCC's) than the polymer based commercial separators (2.2).

     
    more » « less
  4. Summary

    Traditionally, leaves were thought to be supplied withCO2for photosynthesis by the atmosphere and respiration. Recent studies, however, have shown that the xylem also transports a significant amount of inorganic carbon into leaves through the bulk flow of water. However, little is known about the dynamics and proportion of xylem‐transportedCO2that is assimilated, vs simply lost to transpiration.

    Cut leaves ofPopulus deltoidesandBrassica napuswere placed in eitherKCl or one of three [NaH13CO3] solutions dissolved in water to simultaneously measure the assimilation and the efflux of xylem‐transportedCO2exiting the leaf across light andCO2response curves in real‐time using a tunable diode laser absorption spectroscope.

    The rates of assimilation and efflux of xylem‐transportedCO2increased with increasing xylem [13CO2*] and transpiration. Under saturating irradiance, rates of assimilation using xylem‐transportedCO2accounted forc.2.5% of the total assimilation in both species in the highest [13CO2*].

    The majority of xylem‐transportedCO2is assimilated, and efflux is small compared to respiration. Assimilation of xylem‐transportedCO2comprises a small portion of total photosynthesis, but may be more important whenCO2is limiting.

     
    more » « less
  5. Abstract

    For the first time, a transparent high‐entropy fluoride laser ceramic has been prepared and characterized. X‐ray diffraction (XRD) analysis of a CeNdCaSrBaF12(CNCSBF) transparent ceramic consolidated by vacuum hot pressing (VHP) reveals that Ce3+, Nd3+, Ca2+, Sr2+, and Ba2+have formed a single‐phased fluorite solid solution, with a lattice constant of 5.826 Å. Bulk density measurements produced a value of 6.15 g/cm3. Scanning electron microscopy (SEM) analysis of the ceramic revealed a uniform distribution of grain sizes in the material, with the average grain size being approximately 20 μm. The material exhibits a maximum in‐line transmittance of approximately 60% at 1000 nm. A near‐infrared range photoluminescence (PL) emission band was observed at 1057 nm, with a visible‐range PL emission band being located at 440 nm.

     
    more » « less